Volume 9, Issue 4 (Vol.9 No.4 Jan 2021)                   rbmb.net 2021, 9(4): 442-451 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zahedi T, Hosseinzadeh Colagar A, Mahmoodzadeh H. PTGS2 Over-expression: A Colorectal Carcinoma Initiator Not an Invasive Factor. rbmb.net 2021; 9 (4) :442-451
URL: http://rbmb.net/article-1-605-en.html
Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran.
Abstract:   (4502 Views)
Background: Cyclooxygenase-2 (COX-2) main product is Prostaglandin E2 (PGE2) which cause mitogenesis and inflammation. COX-2 is the product of prostaglandin-endoperoxide synthase 2 (PTGS2) gene expression. COX-2 dysregulation can cause angiogenesis, differentiation, and promotion of cancer and its suppression related to control of the tumor's size, number, and cell shape. This study focused on the association of COX-2 expression with colorectal carcinoma (CRC) among Iranian patients on mRNA level and in the Cancer Genome Atlas Program (TCGA) colon and rectum RNAseq dataset, and its relation with pathological features.

Methods: PTGS2 expression was assayed by quantitative-PCR method from 90 tissue samples collected from 45 participants. The control samples come from the non-tumor area of the same patients. The data analyzed based on ΔΔCq. The PTGS2-RNAseq data extracted and analyzed by UCSC Xena browser, and its association assessed the occurrence of CRC and invasive-features.

Results: PTGS2 showed very significant over-expression in tumor tissues (p< 0.0001) with an N-fold expression of 2.25. But, there was not any significant association between PTGS2 and CRC invasive-pathological features such as Lymphatic, vascular and perineural invasion, the Grades of cancer, and Pathologic-M in both parts of this study.

Conclusions: The increase in PTGS2 is related to the occurrence of CRC among patient samples. But in both part of this study, PTGS2 is not an invasive factor, and it does not affect the cell differentiation of tumors and metastasis. Based on the high N-fold for patient samples, it can be a strong candidate as a CRC initiator biomarker.
Full-Text [PDF 360 kb]   (1499 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2020/11/10 | Accepted: 2020/11/14 | Published: 2021/03/8

References
1. Zhoe FF, Huang R, Jiong J, Zong XH, Zou SQ. Correlated non-nuclear COX-2 and low HER2 expression confers a good prognosis in colorectal cancer. Saudi J Gastroenterol. 2018;24(5):301-306. [DOI:10.4103/sjg.SJG_46_18] [PMID] [PMCID]
2. Rafiemanesh H, Pakzad R, Abedi M, Kor Y, Moludi J, Towhidi F, et al. Colorectal cancer in Iran: epidemiology and morphology trends. EXCLI J. 2016;15:738-744.
3. Moghimi-Dehkordi B, Safaee A, Zali M. Prognostic factors in 1,138 Iranian colorectal cancer patients. International Journa Of Colorectal Disease. 2008;23(7):683-688. [DOI:10.1007/s00384-008-0463-7] [PMID]
4. Dolatkhah R, Sami MH, Jabbarpour-Bonyadi M, Asvadi-Kermani I, Farassati F, Dastgiri S. Colorectal cancer in Iran: molecular epidemiology and screening strategies. J Cancer Epidemiol. 2015:643020. [DOI:10.1155/2015/643020] [PMID] [PMCID]
5. Sveen A, Bruun J, Eide PW, Eilertsen IA, Ramirez L, Murumagi A, et al. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin Cancer Res. 2018;24(4):794-806. [DOI:10.1158/1078-0432.CCR-17-1234] [PMID]
6. Malekzadeh R, Bishesari F, Mahdavinia M, Ansari R. Epidemiology and molecular genetics of colorectal cancer in Iran: a review. Arch Iran Med. 2009;12(2):161-9.
7. Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res. 2013;191:7-37. [DOI:10.1007/978-3-642-30331-9_2] [PMID] [PMCID]
8. Gupta RA, DuBois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase2. Nat Rev Cancer. 2001;1(1):11-21. [DOI:10.1038/35094017] [PMID]
9. Periera C, Quieros S, Galaghar A, Sousa H, Marcos-Pinto R, Pimentel-Nunes P, et al. Influence of genetic polymorphisms in prostaglandin E2 pathway (COX-2/HPGD/SLCO2A1/ABCC4) on the risk for colorectal adenoma development and recurrence after polypectomy. Clin Transl Gastroenterol. 2016;7(9):e191. [DOI:10.1038/ctg.2016.47] [PMID] [PMCID]
10. Batista WR, Santos G, Vital FMR, Matos D. Immunoexpression of TS, p53, COX2, EGFR, MSH6 and MLH1 biomarkers and its correlation with degree of differentiation, tumor staging and prognostic factors in colorectal adenocarcinoma: a retrospective longitudinal study. SaoPaulo Med J. 2019;137(1):33-38. [DOI:10.1590/1516-3180.2018.0270071218] [PMID]
11. Cui Y, Shu XO, Li HL, Yang G, Wen W, Gao YT, et al. Prospective study of urinary prostaglandin E2 metabolite and pancreatic cancer risk. Int J Cancer. 2017;141(12):2423-2429. [DOI:10.1002/ijc.31007] [PMID] [PMCID]
12. Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The Cox-2/PGE-2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377-86. [DOI:10.1093/carcin/bgp014] [PMID]
13. Cox DG, Pontes C, Guino E, Navarro M, Osorio A, Canzian F, et al. Polymorphisms in prostaglandin synthase 2/cyclooxygenase 2 (PTGS2/COX2) and risk of colorectal cancer. Br J Cancer. 2004;91(2):339-43. [DOI:10.1038/sj.bjc.6601906] [PMID] [PMCID]
14. Gurram B, Zhang S, Li M, Li H, Xie Y, Cui H, et al. Celecoxib conjugated fluorescent probe for identification and discrimination of cyclooxygenase-2 enzyme in cancer cells. Anal Chem. 2018;90(8):5187-5193. [DOI:10.1021/acs.analchem.7b05337] [PMID]
15. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygense-2 in cancer: a review. Journal of Cellular Physiology. 2018;234(5). [DOI:10.1002/jcp.27411] [PMID]
16. Wang D, Wang H, Shi Q, Katkuri S, Walhi W, Desvergne B, et al. Prostaglandin E2 promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell. 2004;6(3):285-95. [DOI:10.1016/j.ccr.2004.08.011] [PMID]
17. Gasparini G, Longo R, Sarmiento R, Morabito AN. Inhibitors of cyclooxygenase 2: a new class of anticancer agents?. Lancel Oncol. 2003;4(10):605-15. [DOI:10.1016/S1470-2045(03)01220-8]
18. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, et al. Cox-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer. 2000;89(12):2637-45. https://doi.org/10.1002/1097-0142(20001215)89:12<2637::AID-CNCR17>3.0.CO;2-B [DOI:10.1002/1097-0142(20001215)89:123.0.CO;2-B]
19. Raj V, Bhaauria AS, Singh AK, Kumar U, Rai A, Keshari AK, et al. Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling. Cytokine. 2019;118:144-159. [DOI:10.1016/j.cyto.2018.03.026] [PMID]
20. Mortezaee K. Human hepatocellular carcinoma: protection by melatonin. Journal of Cellular Physiology. 2018;233(10):6486-508. [DOI:10.1002/jcp.26586] [PMID]
21. Ohtsuka J, Oshima H, Ezawa I, Abe R, Oshima M, Ohki R. Functional loss of P53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers. Sci Rep. 2018;8(1):2291. [DOI:10.1038/s41598-018-20572-1] [PMID] [PMCID]
22. Montezuma MAP, Fonsera FP, Benites BM, Soares CD, do Amaral-Silva GK, de Almeida OP, et al. COX-2 as a determinant of lower disease-free survival for patients affected by ameloblastoma. Pathol Res Pract. 2018;214(6):907-913. [DOI:10.1016/j.prp.2018.03.014] [PMID]
23. Destefanis F, Fiorito V, Altruda F, Tolosano E. Investigating the connection between endogenous Heme accumulation and COX-2 activity in cancer cells. Front Oncol. 2019;9:162. [DOI:10.3389/fonc.2019.00162] [PMID] [PMCID]
24. Kim SH, Ahn BK, Paik SS, Lee KH. Cyclooxygenase-2 Expression Is a Predictive Marker for Late Recurrence in Colorectal Cancer. Gastroenterol Res Pract. 2018:7968149. [DOI:10.1155/2018/7968149] [PMID] [PMCID]
25. Xu Z, Choudhary S, Voznesensky O, Mehrota M, Woodard M, Hansen M, et al. Overexpression of COX-2 in human osteosarcoma cells decreases proliferation and increases apoptosis. Cancer Res. 2006;66(13):6657-64. [DOI:10.1158/0008-5472.CAN-05-3624] [PMID]
26. Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res. 2004;64(23):8534-40. [DOI:10.1158/0008-5472.CAN-04-1945] [PMID]
27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. [DOI:10.1006/meth.2001.1262] [PMID]
28. Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675-678. [DOI:10.1038/s41587-020-0546-8] [PMID] [PMCID]
29. Wang D, DuBois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10(3):181-93. [DOI:10.1038/nrc2809] [PMID] [PMCID]
30. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, et al. Suppression of intestinal polyposis in APC delta 716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87(5):803-9. [DOI:10.1016/S0092-8674(00)81988-1]
31. Habibollahi P, Jamshidiha M, Daryani NE, Jahanzad I, Ghahremani MH, Ostad SN. Correlation between inducible nitric-oxide synthase and cyclooxygenase-2 expression in human colorectal adenocarcinoma: a cross-sectional study. Pathol Oncol Res. 2010;16(3):327-35. [DOI:10.1007/s12253-009-9239-9] [PMID]
32. Fujita T, Matsuni M, Takaku K, Uetake H, Ichikawa W, Taketo MM, et al. Size- and invasion- dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res. 1998;58(21):4823-6.
33. Negi RR, Rana SV, Gupta V, Gupta R, Chadha VD, Prasad KK, et al. Over-Expression of Cyclooxygenase-2 in Colorectal Cancer Patients. Asian Pac J Cancer Prev. 2019;20(6):1675-1681. [DOI:10.31557/APJCP.2019.20.6.1675] [PMID] [PMCID]
34. Tomozawa S, Tsuno NH, Sunami E, Hatano K, Kitayama J, Osada T, et al. Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer. Br J Cancer. 2000;83(3):324-328. [DOI:10.1054/bjoc.2000.1270] [PMID] [PMCID]
35. Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest. 1997;99(9):2254-9. [DOI:10.1172/JCI119400] [PMID] [PMCID]
36. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60(5):1306-11.
37. Umezawa S, Higurashi T, Komiya Y, Arimoto J, Horito N, Kaneko T, et al. Chemoprevention of colorectal cancer: past, present, and future. Cancer Sci. 2019;110(10):3018-3026. [DOI:10.1111/cas.14149] [PMID] [PMCID]
38. Zare M, Soltanzadeh H, Narimani R. Plasma level of miRNA-7, miRNA-409 and miRNA-93 as potential biomarkers for colorectal cancer. J Genet Resour. 2019;5(1):9-16.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb