Volume 10, Issue 2 (Vol.10 No.2 Jul 2021)                   rbmb.net 2021, 10(2): 164-172 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Altuhafi A, Altun M, Hadwan M H. The Correlation between Selenium Dependent Glutathione Peroxidase Activity and Oxidant/Antioxidant Balance in Sera of Diabetic Patients with Nephropathy. rbmb.net. 2021; 10 (2) :164-172
URL: http://rbmb.net/article-1-606-en.html
Chemistry Department, College of Science, University of Babylon, Babylon, Iraq.
Abstract:   (1151 Views)
Background: Oxidative stress is an imbalance between free radical's production and the body's ability to counteract or detoxify their harmful effects through neutralization by antioxidants, oxidative stress is thought to be involved in the pathogenesis of diabetic nephropathy. One of the key enzymatic antioxidants is glutathione peroxidase (GPx), which plays an important protective function in diabetes complications, by reducing the rising state of oxidative stress and removing toxicity from peroxides and converting them into a non-toxic substance. The objective of this research was to evaluate the rule of glutathione peroxidase in regulate oxidants/antioxidants levels diabetic patients with nephropathy.

Methods: In a case-control study, we assessed serum GPx activity (Se-Dependent, non-selenium dependent and total GPx), total oxidant, lipid peroxidation, total antioxidant, and catalase in healthy control subjects (group 1), in diabetic patients without diabetic nephropathy (group 2) and diabetic patients with nephropathy (group 3).

Results: GPx activity was significantly lower in T2D patients with and without nephropathy compared to healthy subject’s control. Total oxidants and lipids peroxidation have a negative correlation with the GPx and other antioxidants.

Conclusions: Decreased GPx activity indicate a relationship between GPx activity and diabetic nephropathy.
Full-Text [PDF 256 kb]   (481 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2020/11/14 | Accepted: 2020/12/13 | Published: 2021/08/26

1. Williams JE, Helsel B, Nelson B, Eke R. Exercise Considerations for Type 1 and Type 2 diabetes. ACSM's Health & Fitness Journal. 2018;22(1):10-16. [DOI:10.1249/FIT.0000000000000359]
2. Scheid DC, McCarthy LH, Lawler FH, Hamm RM, Reilly KEH. Screening for microalbuminuria to prevent nephropathy in patients with diabetes: A systematic review of the evidence. J Fam Pract. 2001;50(8):661-8.
3. Najafian B, Fogo AB, Lusco MA, Alpers CE. AJKD Atlas of Renal Pathology: Diabetic Nephropathy. Am J Kidney Dis. 2015;66(5):e37-8. [DOI:10.1053/j.ajkd.2015.08.010] [PMID]
4. Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016;148:183-93. [DOI:10.1016/j.lfs.2016.02.002] [PMID]
5. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxidants Redox Signal. 2011;15(7):1957-97. [DOI:10.1089/ars.2010.3586] [PMID] [PMCID]
6. Karunakaran U, Park KG. A systematic review of oxidative stress and safety of antioxidants in diabetes: Focus on islets and their defense. Diabetes Metab J. 2013;37(2):106-12. [DOI:10.4093/dmj.2013.37.2.106] [PMID] [PMCID]
7. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57(6):1446-54. [DOI:10.2337/db08-0057] [PMID]
8. Sekhon LH, Gupta S, Kim Y, Agarwal A. Female Infertility and Antioxidants. Current Women's Health Reviews. 2010;6(2). [DOI:10.2174/157340410791321381]
9. Ahmadvand H, Ghasemi Dehnoo M, Cheraghi R, Rasoulian B, Ezatpour B, Azadpour M, et al. Amelioration of altered serum, liver, and kidney antioxidant enzymes activities by sodium selenite in alloxan-induced diabetic rats. Reports Biochem Mol Biol. 2014;3(1):14-20.
10. Biesalski HK, Bischoff SC, Boehles HJ, Muehlhoefer A. Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine. Water, electrolytes, vitamins and trace elements-Guidelines on Parenteral Nutrition, Chapter 7. GMS German Medical Science. 2009;7.
11. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M. Glutathione peroxidase family - An evolutionary overview. FEBS J. 2008;275(15):3959-70. [DOI:10.1111/j.1742-4658.2008.06542.x] [PMID]
12. Pagana KD, Pagan TJ. Manual of Diagnostic and Laboratory Tests. Elsevier. 2018.
13. Abraham EC, Huff TA, Cope ND, Wilson JB, Bransome ED, Huisman TH. Determination of the glycosylated hemoglobins (Hb A1) with a new microcolumn procedure. Suitability of the technique for assessing the clinical management of diabetes mellitus. Diabetes. 1978; 27(9):931-7 [DOI:10.2337/diab.27.9.931] [PMID]
14. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: Biochemical role as a component of glatathione peroxidase. Science. 1973;179(4073):588-90. [DOI:10.1126/science.179.4073.588] [PMID]
15. Hadwan MH. New method for assessment of serum catalase activity. Indian Journal of Science and Technology. 2016;9(4):1-5. [DOI:10.17485/ijst/2016/v9i4/80499]
16. Campos C, Guzmán R, López-Fernández E, Casado Á. Evaluation of the copper (II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: The CUPRAC-BCS assay. Anal Biochem. 2009;392(1):37-44. [DOI:10.1016/j.ab.2009.05.024] [PMID]
17. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-11. [DOI:10.1016/j.clinbiochem.2005.08.008] [PMID]
18. Buege JA, Aust SD. Microsomal Lipid Peroxidation. Methods Enzymol. 1978;52:302-10. [DOI:10.1016/S0076-6879(78)52032-6]
19. Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546-551. [DOI:10.4103/2230-8210.183480] [PMID] [PMCID]
20. Brugnara L, Novials A, Ortega R, De Rivas B. Clinical characteristics, complications and management of patients with type 2 diabetes with and without diabetic kidney disease (DKD): A comparison of data from a clinical database. Endocrinol Diabetes Nutr. 2018;65(1):30-38. [DOI:10.1016/j.endinu.2017.10.004] [PMID]
21. Tönnies T, Stahl-Pehe A, Baechle C, Castillo K, Yossa R, Holl RW, et al. Diabetic nephropathy and quality of life among youths with long-duration type 1 diabetes: A population-based cross-sectional study. Pediatr Diabetes. 2019;20(5):613-621. [DOI:10.1111/pedi.12837] [PMID]
22. Henriksen EJ. Role of Oxidative Stress in the Pathogenesis of Insulin Resistance and Type 2 Diabetes. Bioactive Food as Dietary Interventions for Diabetes. 2019. [DOI:10.1016/B978-0-12-813822-9.00001-1] [PMID]
23. Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy: Fueling the fire. Nat Rev Endocrinol. 2011;7(3):176-84. [DOI:10.1038/nrendo.2010.212] [PMID]
24. Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2011;1813(7):1351-1359. [DOI:10.1016/j.bbamcr.2011.01.014] [PMID] [PMCID]
25. Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thai. 2010;93(6):682-93.
26. Low PA. Oxidative Stress and Excitatory Neurotoxins in Neuropathy. In: Peripheral Neuropathy. 2005. [DOI:10.1016/B978-0-7216-9491-7.50026-0]
27. Kesavulu MM, Rao BK, Giri R, Vijaya J, Subramanyam G, Apparao C. Lipid peroxidation and antioxidant enzyme status in Type 2 diabetics with coronary heart disease. Diabetes Res Clin Pract. 2001;53(1):33-9 [DOI:10.1016/S0168-8227(01)00238-8]
28. Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, et al. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci. 2013;5(3):213-219. [DOI:10.4103/1947-2714.109193] [PMID] [PMCID]
29. Navarro-Alarcón M, López-G De La Serrana H, Pérez-Valero V, López-Martínez C. Serum and urine selenium concentrations as indicators of body status in patients with diabetes mellitus. Sci Total Environ. 1999;228(1):79-85 [DOI:10.1016/S0048-9697(99)00034-0]
30. Beckett GJ, Arthur JR. Selenium and endocrine systems. J Endocrinol. 2005;184(3):455-65. [DOI:10.1677/joe.1.05971] [PMID]
31. Calabrese V, Mancuso C, Sapienza M, Puleo E, Calafato S, Cornelius C, et al. Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones. 2007;12(4):299-306. [DOI:10.1379/CSC-270.1] [PMID] [PMCID]
32. Sedighi O, Makhlough A, Shokrzadeh M, Hoorshad S. Association between plasma selenium and glutathione peroxidase levels and severity of diabetic nephropathy in patients with type two diabetes mellitus. Nephrourol Mon. 2014;6(5):e21355. [DOI:10.5812/numonthly.21355]
33. Reddi AS, Bollineni JS. Selenium-deficient diet induces renal oxidative stress and injury via TGF-β1 in normal and diabetic rats. Kidney Int. 2001;59(4):1342-53. [DOI:10.1046/j.1523-1755.2001.0590041342.x] [PMID]
34. Claiborne A. Catalase activity. In: Handbook Methods for Oxygen Radical Research. 2018.
35. Dave GS, Kalia K. Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy. Cell Mol Biol (Noisy-le-grand). 2007;53(5):68-78.
36. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018;54(4):287-293. [DOI:10.1016/j.ajme.2017.09.001]
37. Bai J, Rodriguez AM, Melendez JA, Cederbaum AI. Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J Biol Chem. 1999;274(37):26217-24. [DOI:10.1074/jbc.274.37.26217] [PMID]
38. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89(1):27-71. [DOI:10.1152/physrev.00014.2008] [PMID]
39. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19. [DOI:10.1097/WOX.0b013e3182439613] [PMID] [PMCID]
40. Sies H. Total antioxidant capacity: Appraisal of a concept J Nutr. 2007;137(6):1493-5. [DOI:10.1093/jn/137.6.1493] [PMID]
41. Singla H, Goyal G, Garg C, Bhalla K. Total antioxidant status in type 2 diabetes mellitus with diabetic nephropathy. IJAM. 2019. [DOI:10.18203/2349-3933.ijam20191540]
42. Dimayuga FO, Wang C, Clark JM, Dimayuga ER, Dimayuga VM, Bruce-Keller AJ. SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J Neuroimmunol. 2007;182(1-2):89-99. [DOI:10.1016/j.jneuroim.2006.10.003] [PMID] [PMCID]
43. Arthur JR. The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS. 2000;57(13-14):1825-1835. [DOI:10.1007/PL00000664] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb