Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 477-487 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ilias A N, Ismail I S, Hamzah H, Mohd Mohidin T B, Idris M F, Ajat M. Rebaudioside A Enhances LDL Cholesterol Uptake in HepG2 Cells via Suppression of HMGCR Expression. rbmb.net 2021; 10 (3) :477-487
URL: http://rbmb.net/article-1-638-en.html
Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia.
Abstract:   (3029 Views)
Background: Rebaudioside A is one of the major diterpene glycosides found in Stevia had been reported to possess anti-hyperlipidemic effects. In this study, we explore the potential cholesterol-regulating mechanisms of Rebaudioside A in the human hepatoma (HepG2) cell line in comparison with simvastatin.

Methods: Cells were incubated with Rebaudioside A at several concentrations (0-10 μM) to determine the cytotoxicity by the MTT assay. Cells were treated with selected dosage (1 and 5 μM) in further experiments. Total cellular lipid was extracted by Bligh and Dyer method and subjected to quantitative colorimetric assay. To illustrate the effect of Rebaudioside A on cellular lipid droplets and low-density lipoprotein receptors, treated cells were subjected to immunofluorescence microscopy. Finally, we investigated the expression of experimental gene patterns of cells in response to treatment.

Results: In this study, cytotoxicity of Rebaudioside A was determined at 27.72 μM. Treatment of cells with a higher concentration of Rebaudioside A promotes better hepatocellular cholesterol internalization and ameliorates cholesterol-regulating genes such as HMGCR, LDLR, and ACAT2.

Conclusions: In conclusion, our data demonstrated that Rebaudioside A is capable to regulate cholesterol levels in HepG2 cells. Hence, we proposed that Rebaudioside A offers a potential alternative to statins for atherosclerosis therapy.
Full-Text [PDF 340 kb]   (1352 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/01/13 | Accepted: 2021/02/8 | Published: 2021/12/5

References
1. Sarker SD, Nahar L. Evidence-based phytotherapy: what, why and how?. Trends in phytochemical research. 2018;2(3):125-6.
2. Ahmad J, Khan I, Blundell R, Azzopardi J, Mahomoodally MF. Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends in Food Science & Technology. 2020;100:117-189. [DOI:10.1016/j.tifs.2020.04.030]
3. Yadav SK, Guleria P. Steviol glycosides from Stevia: biosynthesis pathway review and their application in foods and medicine. Crit Rev Food Sci Nutr. 2012;52(11):988-98. [DOI:10.1080/10408398.2010.519447] [PMID]
4. Mathur S, Bulchandani N, Parihar S, Shekhawat GS. Critical review on steviol glycosides: Pharmacological, toxicological and therapeutic aspects of high potency zero caloric sweetener. International Journal of Pharmacology. 2017;13(7):916-928. [DOI:10.3923/ijp.2017.916.928]
5. Latarissa IR, Barliana MI, Lestari K. A Comprehensive Review of Stevia rebaudiana Bertoni effects on Human Health and Its Mechanism. Journal of Advanced Pharmacy Education and Research. 2020;10(2): 91-95.
6. Ullah A, Munir S, Mabkhot Y, Badshah SL. Bioactivity profile of the diterpene isosteviol and its derivatives. Molecules. 2019;24(4):678. [DOI:10.3390/molecules24040678] [PMID] [PMCID]
7. Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther. 2009;121(1):41-54. [DOI:10.1016/j.pharmthera.2008.09.007] [PMID]
8. Saravanan R, Ramachandran V. Effect of Rebaudioside A, a diterpenoid on glucose homeostasis in STZ-induced diabetic rats. J Physiol Biochem. 2012;68(3):421-31. [DOI:10.1007/s13105-012-0156-0] [PMID]
9. Gupta E, Purwar S, Sundaram S, Rai GK. Nutritional and therapeutic values of Stevia rebaudiana: A review. Journal of Medicinal Plants Research. 2013;7(46):3343-3353.
10. Wang LS, Shi Z, Shi BM, Shan AS. Effects of dietary stevioside/rebaudioside A on the growth performance and diarrhea incidence of weaned piglets. Animal Feed Science and Technology. 2014;187:104-109. [DOI:10.1016/j.anifeedsci.2013.10.014]
11. Wang Y, Li L, Wang Y, Zhu X, Jiang M, Song E, et al. New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: Induction of the Nrf2 signaling pathway. Eur J Pharmacol. 2018;5(822):128-137. [DOI:10.1016/j.ejphar.2018.01.020] [PMID]
12. Casas‐Grajales S, Reyes‐Gordillo K, Cerda‐García‐Rojas CM, Tsutsumi V, Lakshman MR, Muriel P. Rebaudioside A administration prevents experimental liver fibrosis: an in vivo and in vitro study of the mechanisms of action involved. J Appl Toxicol. 2019;39(8):1118-1131. [DOI:10.1002/jat.3797] [PMID]
13. Saravanan R, Ramachandran V. Modulating efficacy of Rebaudioside A, a diterpenoid on antioxidant and circulatory lipids in experimental diabetic rats. Environ Toxicol Pharmacol. 2013;36(2):472-483. [DOI:10.1016/j.etap.2013.05.009] [PMID]
14. Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC medicine. 2013;11(1):1-3. [DOI:10.1186/1741-7015-11-117] [PMID] [PMCID]
15. Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol. 2019;73(1):22-27. [DOI:10.1016/j.jjcc.2018.05.010] [PMID]
16. Deng W, Tang T, Hou Y, Zeng Q, Wang Y, Fan W, et al. Extracellular vesicles in atherosclerosis. Clin Chim Acta. 2019;495:109-117. [DOI:10.1016/j.cca.2019.04.051] [PMID]
17. Konstantinov IE, Jankovic GM. Alexander I. Ignatowski: a pioneer in the study of atherosclerosis. Tex Heart Inst J. 2013;40(3):246-249.
18. Gratl V, Cheung RC, Chen B, Taghibiglou C, Van Iderstine SC, Adeli K. Simvastatin, an HMG-CoA reductase inhibitor, induces the synthesis and secretion of apolipoprotein AI in HepG2 cells and primary hamster hepatocytes. Atherosclerosis. 2002;163(1):59-68. [DOI:10.1016/S0021-9150(01)00754-7]
19. Cheraghi M, Ahmadvand H, Maleki A, Babaeenezhad E, Shakiba S, Hassanzadeh F. Oxidative stress status and liver markers in coronary heart disease. Rep Biochem Mol Biol. 2019;8(1):49-55.
20. Golomb BA, Evans MA. Statin adverse effects: A Review of the Literature and Evidence for a Mitochondrial Mechanism. Am J Cardiovasc Drugs. 2008;8(6):373-418. [DOI:10.2165/0129784-200808060-00004] [PMID]
21. Kitzmiller JP, Mikulik EB, Dauki AM, Murkherjee C, Luzum JA. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016;9:97-106. [DOI:10.2147/PGPM.S86013] [PMID] [PMCID]
22. Ramkumar S, Raghunath A, Raghunath S. Statin therapy: review of safety and potential side effects. Acta Cardiol Sin. 2016;32(6):631-639.
23. Sadeghi MM, Collinge M, Pardi R, Bender JR. Simvastatin modulates cytokine-mediated endothelial cell adhesion molecule induction: involvement of an inhibitory G protein. J Immunol. 2000;165(5):2712-8. [DOI:10.4049/jimmunol.165.5.2712] [PMID]
24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. [DOI:10.1016/0022-1759(83)90303-4]
25. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911-7. [DOI:10.1139/o59-099] [PMID]
26. Donato MT, Tolosa L, Gómez-Lechón MJ. Culture and functional characterization of human hepatoma HepG2 cells. Methods Mol Biol. 2015;1250:77-93. [DOI:10.1007/978-1-4939-2074-7_5] [PMID]
27. Afonso MS, Machado RM, Lavrador MS, Quintao EC, Moore KJ, Lottenberg AM. Molecular pathways underlying cholesterol homeostasis. Nutrients. 2018;10(6):760. [DOI:10.3390/nu10060760] [PMID] [PMCID]
28. Wu X, Wang B, Chen T, Gan M, Chen X, Chen F, et al. The non-cytotoxicity characterization of rebaudioside A as a food additive. Food Chem Toxicol. 2014;66:334-40. [DOI:10.1016/j.fct.2014.01.038] [PMID]
29. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161-172. [DOI:10.1016/j.cell.2015.01.036] [PMID] [PMCID]
30. Gent J, Braakman I. Low-density lipoprotein receptor structure and folding. Cell Mol Life Sci. 2004;61(19-20):2461-70. [DOI:10.1007/s00018-004-4090-3] [PMID]
31. Cheraghi M, Shahsavari G, Maleki A, Ahmadvand H. Paraoxonase 1 activity, lipid profile, and atherogenic indexes status in coronary heart disease. Rep Biochem Mol Biol. 2017;6(1):1-7.
32. Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes Metab Syndr Obes. 2019;12:1543-1553. [DOI:10.2147/DMSO.S219013] [PMID] [PMCID]
33. Tirawanchai N, Homongkol P, Chansriniyom C, Somkasetrin A, Jantaravinid J, Kengkoom K, et al. Lipid-lowering effect of Phyllanthus embilica and Alpinia galanga extracts on HepG2 cell line. PharmaNutrition. 2019;9:100153. [DOI:10.1016/j.phanu.2019.100153]
34. Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab. 2012;16(4):414-9. [DOI:10.1016/j.cmet.2012.09.002] [PMID] [PMCID]
35. Bhattacharya BS, Sweby PK, Minihane AM, Jackson KG, Tindall MJ. A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway. J Theor Biol. 2014;349:150-62. [DOI:10.1016/j.jtbi.2014.01.013] [PMID] [PMCID]
36. Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86(11):839-48. [DOI:10.1016/j.biochi.2004.09.018] [PMID]
37. Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 2010;501(2):177-81. [DOI:10.1016/j.abb.2010.06.004] [PMID]
38. Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225-245. [DOI:10.1038/s41580-019-0190-7] [PMID]
39. van der Wulp MY, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol. 2013;368(1-2):1-16. [DOI:10.1016/j.mce.2012.06.007] [PMID]
40. K Jha C, Mir R, Elfaki I, Banu S, Chahal SM. Ldlr Gene Polymorphisms (Rs5925 and Rs1529729) Are Associated with Susceptibility to Coronary Artery Disease in a South Indian Population. Med Sci (Basel). 2019;7(7):80. [DOI:10.3390/medsci7070080] [PMID] [PMCID]
41. Zhang Y, Ma KL, Ruan XZ, Liu BC. Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. Int J Biol Sci. 2016;12(5):569-79. [DOI:10.7150/ijbs.14027] [PMID] [PMCID]
42. Parini P, Davis M, Lada AT, Erickson SK, Wright TL, Gustafsson U, et al. ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation. 2004;110(14):2017-23. [DOI:10.1161/01.CIR.0000143163.76212.0B] [PMID]
43. Wilfling F, Haas JT, Walther TC, Farese Jr RV. Lipid droplet biogenesis. Curr Opin Cell Biol. 2014;29:39-45. [DOI:10.1016/j.ceb.2014.03.008] [PMID] [PMCID]
44. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20(3):137-155. [DOI:10.1038/s41580-018-0085-z] [PMID] [PMCID]
45. Jarc E, Petan T. Focus: Organelles: Lipid Droplets and the Management of Cellular Stress. Yale J Biol Med. 2019;92(3):435-452.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb