Volume 10, Issue 4 (Vol.10 No.4 Jan 2022)                   rbmb.net 2022, 10(4): 614-621 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi A, Bayatiani M R, Seif F, Ansari J, Rashidi P, Moghadasi M et al . Evaluation of Radiotherapy on miR-374 Gene Expression in Colorectal Cancer Patient Blood Samples. rbmb.net. 2022; 10 (4) :614-621
URL: http://rbmb.net/article-1-643-en.html
Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences and Khansari Hospital, Arak, Iran.
Abstract:   (761 Views)
Background: Current cancer treatments include surgery, radiotherapy, chemotherapy, and immunotherapy. Despite these treatments, a main issue in cancer treatment is early detection. microRNAs (miRNAs) can be used as markers to diagnose and treat cancers. This study investigated the effect of radiotherapy on miR-374 expression, and APC and GSK-3β, two of its target genes, in the WNT pathway, in peripheral blood samples from radiotherapy-treated colorectal cancer (CRC) patients.

Methods: Peripheral blood was collected from 25 patients before and after radiotherapy. RNA was extracted from the blood and cDNA synthesized. miR-374, APC, and GSK-3β expression was determined by real-time polymerase chain reaction (RT-PCR) and the amplicons were sequenced. Finally, the data were statistically evaluated.

Results: Quantitative RT-PCR revealed significant down-regulation of miR-374 (0.63-fold) and upregulation of APC (1.12-fold) and GSK-3β (1.22-fold) in CRC patients after five weeks of radiotherapy. Sequencing of PCR-produced amplicons confirmed the conservation of mature and precursor sequences
encoding miR-374. miR-374 expression changed with time after radiotherapy treatment and related tumor grading. Increased age and tumor grade positively correlated with decreased miR-374 expression.

Conclusions: miR-374 expression, and that of its two target genes, APC and GSK-3β, changed after radiotherapy. These genes can likely be used as  diagnostic radiotherapy markers in CRC.
Full-Text [PDF 406 kb]   (344 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2021/01/19 | Accepted: 2021/10/24 | Published: 2022/02/7

1. Peedikayil MC, Nair P, Seena SM, Radhakrishnan L, Sadasivan S, Naryanan VA, et al. Colorectal cancer distribution in 220 Indian patients undergoing colonoscopy. Indian J Gastroenterol. 2009;28(6):212-5. [DOI:10.1007/s12664-009-0087-z] [PMID]
2. Mirkarimi HS. Nutritional characteristics in patients with colorectal cancer in Golestan Province of Iran, A case-control study. J Gorgan Univ Med Sci. 2009;10;11(2):38-44.
3. Pourhoseingholi M A, Fazeli Z, Fazeli-Bavandpour F S, Abadi A. Study of mortality trends of colorectal cancer in Iran between 1995 and 2004. Medical Sciences. 2014; 23 (4 and 1) :16-20
4. Rahimi Pordanjani S, Baeradeh N, Lotfi MH, Pourmohammadi B. Epidemiology of colorectal cancer: incidence, mortality, survival rates and risk factors. Razi Journal of Medical Sciences. 2016;10;23(144):41-50.
5. Safaei A, Moghimi DB, Fatemi SR, Ghiasi S, Zali MR. Epidemiology of colorectal Cancer: Study the recorded cases in 1379-86. 2007;9(3):209-216.
6. Fakheri H, Janbabai GH, Bari Z, Eshqi F. The epidemiologic and clinical-pathologic characteristics of colorectal cancers from 1999 to 2007 in Sari, Iran. Journal of Mazandaran University of Medical Sciences. 2008;10;18(67):58-66.
7. Mirmiran P, Azizi F, Janghorbani M, Hatami H. Epidemiology and Control of Common Disorders in Iran. Tehran. Khosravi Publishing; 2009.
8. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59(6):366-78. [DOI:10.3322/caac.20038] [PMID]
9. Asghari-Jafarabadi M, Hajizadeh E, Kazemnejad A, Fatemi SR. Recognition of the factors affecting survival in colon and rectal cancer patients referred to RCGLD center of Shahid Beheshti University of Medical Sciences: accelerated failure time parametric survival analysis with frailty. Journal of Shahrekord University of Medical Sciences. 2010;12(2):51-64.
10. AR SN, Sh G, Mirshafiei A, Alimohamadian MH. Assessment of TPS tumor marker with ELISA for early detection and monitoring of gastrointestinal cancers. Tehran University Medical Journal. 2006;10;64(11):25-31.
11. Saebnia N, Sadeghizadeh M. The main factors involved in the recurrence of colorectal cancer and therapeutic methods against them. Police Medicine. 2016;10;5(2):87-95.
12. Jo P, Azizian A, Salendo J, Kramer F, Bernhardt M, Wolff HA, et al. Changes of microrna levels in plasma of patients with rectal cancer during chemoradiotherapy. International journal of molecular sciences. 2017;18(6). [DOI:10.3390/ijms18061140] [PMID] [PMCID]
13. Massard C, Deutsch E, Soria J. Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol. 2006;17(11):1620-4. [DOI:10.1093/annonc/mdl074] [PMID]
14. Bayatiani MR, Ahmadi A, Aghabozorgi R, Seif F. Concomitant Up-Regulation of Hsa-Mir-374 and Down-Regulation of Its Targets, GSK-3β and APC, in Tissue Samples of Colorectal Cancer. Reports of Biochemistry & Molecular Biology. 2021;9(4):408-416. [DOI:10.52547/rbmb.9.4.408] [PMID] [PMCID]
15. Rothschild SI. microRNA therapies in cancer. Molecular and cellular therapies. 2014;2(1):1-8. [DOI:10.1186/2052-8426-2-7] [PMID] [PMCID]
16. Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol. 2014;20(19):5694-5699. [DOI:10.3748/wjg.v20.i19.5694] [PMID] [PMCID]
17. López JA, Alvarez-Salas LM. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion. Biochem Biophys Res Commun. 2011;10;409(3):513-9. [DOI:10.1016/j.bbrc.2011.05.036] [PMID]
18. Zhou R, Gong AY, Chen D, Miller RE, Eischeid AN, Chen XM. Histone deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response to microbial challenge by suppressing miR-424 and miR-503. PLoS One. 2013;28;8(5):e65153. [DOI:10.1371/journal.pone.0065153] [PMID] [PMCID]
19. Zhao Y, Liu H, Li Y, Wu J, Greenlee AR, Yang C, et al. The role of miR-506 in transformed 16HBE cells induced by anti-benzo [a] pyrene-trans-7, 8-dihydrodiol-9, 10-epoxide. Toxicol Lett. 2011;10;205(3):320-6. [DOI:10.1016/j.toxlet.2011.06.022] [PMID]
20. Incoronato M, Urso L, Portela A, Laukkanen MO, Soini Y, Quintavalle C, et al. Epigenetic regulation of miR-212 expression in lung cancer. PloS one. 2011; 6(11):e27722. [DOI:10.1371/journal.pone.0027722] [PMID] [PMCID]
21. Cai SD, Chen JS, Xi ZW, Zhang LJ, Niu ML, Gao ZY. MicroRNA 144 inhibits migration and proliferation in rectal cancer by downregulating ROCK 1. Mol Med Rep. 2015; 12(5):7396-7402. [DOI:10.3892/mmr.2015.4391] [PMID] [PMCID]
22. Liao WT, Ye YP, Zhang NJ, Li TT, Wang SY, Cui YM, et al. MicroRNA‐30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2. J Pathol. 2014;232(4):415-27. [DOI:10.1002/path.4309] [PMID]
23. Lim SH, Ip E, Chua W, Ng W, Henderson C, Shin JS, et al. Serum microRNA expression during neoadjuvant chemoradiation for rectal cancer. Journal of clinical Oncology. 2017;35(15). [DOI:10.1200/JCO.2017.35.15_suppl.e15081]
24. Miko E, Czimmerer Z, Csánky E, Boros G, Buslig J, Dezső B, et al. Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res. 2009;35(8):646-64. [DOI:10.3109/01902140902822312] [PMID]
25. Wang W, Ma F, Zhang H. MicroRNA-374 is a potential diagnostic biomarker for atherosclerosis and regulates the proliferation and migration of vascular smooth muscle cells. Cardiovasc Diagn Ther. 2020;10(4):687-694. [DOI:10.21037/cdt-20-444] [PMID] [PMCID]
26. Li XJ, Li ZF, Xu YY, Han Z, Liu ZJ. microRNA‐374 inhibits proliferation and promotes apoptosis of mouse melanoma cells by inactivating the Wnt signalling pathway through its effect on tyrosinase. J Cell Mol Med. 2019;23(8):4991-5005. [DOI:10.1111/jcmm.14348] [PMID] [PMCID]
27. Ji R, Zhang X, Qian H, Gu H, Sun Z, Mao F, et al. miR-374 mediates the malignant transformation of gastric cancer-associated mesenchymal stem cells in an experimental rat model. Oncology reports. 2017;38(3):1473-1481. [DOI:10.3892/or.2017.5831] [PMID] [PMCID]
28. Li W, Tang N, Tao J, Zhu Z, Liu L, Fang Q, et al. MicroRNA-374 targets JAM-2 regulates the growth and metastasis of human pancreatic cancer cells. Am J Transl Res. 2019;11(10):6454-6461.
29. Baek SJ, Sato K, Nishida N, Koseki J, Azuma R, Kawamoto K, et al. MicroRNA miR-374, a potential radiosensitizer for carbon ion beam radiotherapy. Oncol Rep. 2016; 36(5):2946-2950. [DOI:10.3892/or.2016.5122] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb