Volume 10, Issue 2 (Vol.10 No.2 Jul 2021)                   rbmb.net 2021, 10(2): 334-345 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi A, Balizadeh Karami A R, Mard S A, Goudarzi G, Maleki H, Chamkouri N, et al . Effect of Total Suspended Particulate Matter in the Air on Inflammation Factors and Apoptotic Markers in Diabetic Rats: The Protective Effect of Insulin and Crocin. rbmb.net 2021; 10 (2) :334-345
URL: http://rbmb.net/article-1-669-en.html
Abadan Faculty of Medical Sciences, Abadan, Iran.
Abstract:   (3112 Views)
Background: The effect of total suspended particulate matter (TSP) was investigated on the expression of inflammatory and apoptotic factors in diabetic rats, and the effect of crocin and insulin was examined on these factors. 
 
Methods: Fifty-four adult male wistar rats were divided into nine experimental groups: control group, crocin group (received crocin, 50 mg/kg), diabetic group (received a single dose of alloxan at 120 mg/kg, IP), TSP group (5 mg/kg TSP instilled intratracheally), diabetic-crocin group (received crocin at 50 mg/kg after the induction of diabetes by alloxan (120 mg/kg)), diabetic-insulin group (received regular insulin (5 U/kg), crocin-TSP group (received crocin at 50 mg/kg, IP, and then 5 mg/kg TSP was instilled intratracheally), diabetic-TSP-insulin group (after receiving alloxan (120 mg/kg) and instilling TSP (5 mg/kg, intratracheally), a single dose (5 U/kg) of regular insulin), and diabetic-TSP-crocin group (after receiving alloxan (120 mg/kg) and instilling TSP (5 mg/kg, intratracheally), a single dose of crocin (50 mg/kg, IP)). Quantitative real-time PCR was performed to measure the expression of the mRNAs of apoptotic (Bax and Bcl2) and inflammatory mediators (TNFα, COX2, iNOS/eNOS) in Wistar rats.
 
Results: In diabetic and TSP groups the inflammatory factors and BAX/Bcl2 ratio significantly increased compared to the control group. In diabetic-TSP-insulin and diabetic-TSP-crocin, a significant decrease was observed in the rate of inflammatory factors and BAX/Bcl2 ratio.

Conclusions: The results suggested that diabetes and exposure to TSP increase the rate of apoptosis and inflammation, and also demonstrated the anti-apoptotic and anti-inflammation role of insulin and crocin.
Full-Text [PDF 456 kb]   (1424 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/03/9 | Accepted: 2021/06/25 | Published: 2021/08/26

References
1. Laakso M. Biomarkers for type 2 diabetes. Molecular Metabolism. 2019;27:S139-S146. [DOI:10.1016/j.molmet.2019.06.016] [PMID] [PMCID]
2. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435-44. [DOI:10.1007/s11892-013-0375-y] [PMID]
3. Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, et al. High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes. 2001;50(6):1290-301. [DOI:10.2337/diabetes.50.6.1290] [PMID]
4. David AE, Kesiye IA, Stephen UA, Nimibofa A, Etta BA. Measurement of Total Suspended Particulate Matter (TSP) in an Urban Environment: Yenagoa and Its Environs.
5. Pearson JF, Bachireddy C, Shyamprasad S, Goldfine AB, Brownstein JS. Association between fine particulate matter and diabetes prevalence in the US. Diabetes care. 2010;33(10):2196-2201. [DOI:10.2337/dc10-0698] [PMID] [PMCID]
6. Moon D, Park S, Kim S, Kim J, Kim M, Kim K, et al. Altered proinflammatory cytokines and m1 polarization induced by pm2. 5 in alveolar macrophages. Applied Ecology And Environmental Research. 2018;16(6):7699-7712. [DOI:10.15666/aeer/1606_76997712]
7. Tsai D-H, Amyai N, Marques-Vidal P, Wang J-L, Riediker M, Mooser V, et al. Effects of particulate matter on inflammatory markers in the general adult population. Part Fibre Toxicol. 2012;9:24. [DOI:10.1186/1743-8977-9-24] [PMID] [PMCID]
8. Pope III CA, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O'Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res. 2016;119(11):1204-1214. [DOI:10.1161/CIRCRESAHA.116.309279] [PMID] [PMCID]
9. Liu X, Zhang Y, Yang X. PM 2.5 induced neurodegenerative-like changes in mice and the antagonistic effects of vitamin E. Toxicol Res (Camb). 2019;8(2):172-179. [DOI:10.1039/C8TX00333E] [PMID] [PMCID]
10. Guo Z, Hong Z, Dong W, Deng C, Zhao R, Xu J, et al. PM2.5-induced oxidative stress and mitochondrial damage in the nasal mucosa of rats. Int J Environ Res Public Health. 2017;14(2):134. [DOI:10.3390/ijerph14020134] [PMID] [PMCID]
11. Villarreal-Calderon R, Reed W, Palacios-Moreno J, Keefe S, Herritt L, Brooks D, et al. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection. Exp Toxicol Pathol. 2012;64(4):297-306. [DOI:10.1016/j.etp.2010.09.002] [PMID] [PMCID]
12. Lee C-W, Lin Z-C, Hu SC-S, Chiang Y-C, Hsu L-F, Lin Y-C, et al. Urban particulate matter down-regulates filaggrin via COX2 expression/PGE2 production leading to skin barrier dysfunction. Sci Rep. 2016;6:27995. [DOI:10.1038/srep27995] [PMID] [PMCID]
13. Long M-H, Zhu X-M, Wang Q, Chen Y, Gan X-D, Li F, et al. PM2.5 exposure induces vascular dysfunction via NO generated by iNOS in lung of ApoE-/-mouse. Int J Biol Sci. 2020;16(1):49-60. [DOI:10.7150/ijbs.36073] [PMID] [PMCID]
14. Dou C, Zhang J, Qi C. Cooking oil fume-derived PM 2.5 induces apoptosis in A549 cells and MAPK/NF-кB/STAT1 pathway activation. Environ Sci Pollut Res Int. 2018;25(10):9940-9948. [DOI:10.1007/s11356-018-1262-5] [PMID]
15. Ru Q, Xiong Q, Chen L, Tian X, Yue K, Ma B, et al. Lipopolysaccharide accelerates fine particulate matter-induced cell apoptosis in human lung bronchial epithelial cells. Int J Occup Med Environ Health. 2018;31(2):173-183. [DOI:10.13075/ijomeh.1896.00527] [PMID]
16. Pham TQ, Cormier F, Farnworth E, Tong VH, Van Calsteren M-R. Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J Agric Food Chem. 2000;48(5):1455-61. [DOI:10.1021/jf991263j] [PMID]
17. Sanchez AM, Carmona M, Jaren-Galan M, Minguez Mosquera MI, Alonso GL. Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment. J Agric Food Chem. 2011;59(1):249-55. [DOI:10.1021/jf102828v] [PMID]
18. Dandona P, Chaudhuri A, Ghanim H, Mohanty P. Insulin as an anti-inflammatory and antiatherogenic modulator. J Am Coll Cardiol. 2009;53(5 Supplement):S14-S20. [DOI:10.1016/j.jacc.2008.10.038] [PMID]
19. Margaritis I, Angelopoulou K, Lavrentiadou S, Mavrovouniotis IC, Tsantarliotou M, Taitzoglou I, et al. Effect of crocin on antioxidant gene expression, fibrinolytic parameters, redox status and blood biochemistry in nicotinamide-streptozotocin-induced diabetic rats. J Biol Res (Thessalon). 2020;27:4. [DOI:10.1186/s40709-020-00114-5] [PMID] [PMCID]
20. Dandona P, Chaudhuri A, Mohanty P, Ghanim H. Anti-inflammatory effects of insulin. Curr Opin Clin Nutr Metab Care. 2007;10(4):511-7. [DOI:10.1097/MCO.0b013e3281e38774] [PMID]
21. Carter MR, Gregorich, EG. (Ed.). Soil Sampling and Methods of Analysis: CRC Press; 2007. [DOI:10.1201/9781420005271]
22. Lachin T, Reza H. Anti diabetic effect of cherries in alloxan induced diabetic rats. Recent Pat Endocr Metab Immune Drug Discov. 2012;6(1):67-72. https://doi.org/10.2174/1872214808666140121151334 [DOI:10.2174/187221412799015308]
23. Zheng J, Zhang G, Lu Y, Fang F, He J, Li N, et al. Effect of pulmonary surfactant and phospholipid hexadecanol tyloxapol on recombinant human-insulin absorption from intratracheally administered dry powders in diabetic rats. Chem Pharm Bull (Tokyo). 2010;58(12):1612-6. [DOI:10.1248/cpb.58.1612] [PMID]
24. Omabe M, Nwudele C, Omabe KN, Okorocha AE. Anion gap toxicity in alloxan induced type 2 diabetic rats treated with antidiabetic noncytotoxic bioactive compounds of ethanolic extract of Moringa oleifera. J Toxicol. 2014; 2014:406242. [DOI:10.1155/2014/406242] [PMID] [PMCID]
25. Jamaati H, Bahrami N, Daustany M, Tabarsi P, Farzanegan B, Hashemian S M et al. Investigating PIK3R3 and ATp2A1 Genes Expressions in Ventilator-Associated Pneumonia Patients Admitted to the Intensive Care Unit of Masih Daneshvari Hospital in 2016. Rep Biochem Mol Biol. 2018;6(2):118-124.
26. Szerafin T, Erdei N, Fülöp T, Pasztor ET, Édes In, Koller A, et al. Increased cyclooxygenase-2 expression and prostaglandin-mediated dilation in coronary arterioles of patients with diabetes mellitus. Circ Res. 2006;99(5):e12-7. [DOI:10.1161/01.RES.0000241051.83067.62] [PMID]
27. Aly MI, Abdalla MN, El Akad MH, El-Sheikh SA, Yousief EM. Role of iNOS and eNOS expression in a group of Egyptian diabetic and nondiabetic nephropathy patients. The Egyptian Journal of Internal Medicine. 2013;25(1):33-36.
28. Hasnan J, Yusoff M, Damitri T, Faridah A, Adenan A, Norbaini T. Relationship between apoptotic markers (Bax and Bcl-2) and biochemical markers in type 2 diabetes mellitus. Singapore Med J. 2010;51(1):50-5.
29. Koh P-O. Streptozotocin-induced diabetes increases apoptosis through JNK phosphorylation and Bax activation in rat testes. J Vet Med Sci. 2007;69(9):969-71. [DOI:10.1292/jvms.69.969] [PMID]
30. Tamagawa E, Bai N, Morimoto K, Gray C, Mui T, Yatera K, et al. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L79-L85. [DOI:10.1152/ajplung.00048.2007] [PMID] [PMCID]
31. Cui Y, Xie X, Jia F, He J, Li Z, Fu M, et al. Ambient fine particulate matter induces apoptosis of endothelial progenitor cells through reactive oxygen species formation. Cell Physiol Biochem. 2015;35(1):353-63. [DOI:10.1159/000369701] [PMID] [PMCID]
32. Guo L, Li B, Miao J-j, Yun Y, Li G-k, Sang N. Seasonal variation in air particulate matter (PM10) exposure-induced ischemia-like injuries in the rat brain. Chem Res Toxicol. 2015;28(3):431-9. [DOI:10.1021/tx500392n] [PMID]
33. Kamdar O, Le W, Zhang J, Ghio A, Rosen G, Upadhyay D. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium. FEBS Lett. 2008;582(25-26):3601-3606. [DOI:10.1016/j.febslet.2008.09.030] [PMID] [PMCID]
34. Zheng X, Wang X, Wang T, Zhang H, Wu H, Zhang C, et al. Gestational exposure to particulate matter 2.5 (PM2.5) leads to spatial memory dysfunction and neurodevelopmental impairment in hippocampus of mice offspring. Front Neurosci. 2019;12:1000. [DOI:10.3389/fnins.2018.01000] [PMID] [PMCID]
35. Hazman Ö, Aksoy L, Büyükben A. Effects of crocin on experimental obesity and type-2 diabetes. Turk J Med Sci. 2016;46(5):1593-1602. [DOI:10.3906/sag-1506-108] [PMID]
36. Soleymaninejad M, Joursaraei SG, Feizi F, Jafari Anarkooli I. The effects of lycopene and insulin on histological changes and the expression level of Bcl-2 family genes in the hippocampus of streptozotocin-induced diabetic rats. J Diabetes Res. 2017;2017:4650939. [DOI:10.1155/2017/4650939] [PMID] [PMCID]
37. Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase. Metabolism. 2000;49(2):147-50. [DOI:10.1016/S0026-0495(00)91039-4]
38. Jeschke MG, Klein D, Bolder U, Einspanier R. Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology. 2004;145(9):4084-93. [DOI:10.1210/en.2004-0592] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb