Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 420-428 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dalvand S, Namdari A, Sepahvand F, Meshkibaf M H, Ahmadpour G. Investigation of Decitabine Effects on HDAC3 and HDAC7 mRNA Expression in NALM-6 and HL-60 Cancer Cell Lines. rbmb.net. 2021; 10 (3) :420-428
URL: http://rbmb.net/article-1-677-en.html
International Campus, Department of Biochemistry and Molecular Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Abstract:   (379 Views)
Background: Decitabine is a potent anticancer hypomethylating agent and changes the gene expression through the gene's promoter demethylation and also independently from DNA demethylation. So, the present study was designed to distinguish whether Decitabine, in addition to inhibitory effects on DNA
methyltransferase, can change HDAC3 and HDAC7 mRNA expression in NALM-6 and HL-60 cancer cell lines.

Methods: HL-60, NALM-6, and normal cells were cultured, and the Decitabine treatment dose was obtained (1 μM) through the MTT assay. Finally, HDAC3 and HDAC7 mRNA expression were measured by Real-Time PCR in HL-60 and NALM-6 cancerous cells before and after treatment. Furthermore, HDAC3 and HDAC7 mRNA expression in untreated HL-60 and NALM-6 cancerous cells were compared to normal cells. 

Results: Our results revealed that the expression of HDAC3 and HDAC7 in HL-60 and NALM-6 cells increases as compared to normal cells. After treatment of HL-60 and NALM-6 cells with Decitabine, HDAC3, and HDAC7 mRNA expression were decreased significantly. 

Conclusions: Our data confirmed that the effects of Decitabine are not limited to direct hypomethylation of DNMTs, but it can indirectly affect other epigenetic factors, such as HDACs activity, through converging pathways.
Full-Text [PDF 309 kb]   (206 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/03/23 | Accepted: 2021/04/6 | Published: 2021/12/5

References
1. Taheri Z, Aghdaei HA, Irani S, Modarressi MH, Zahra N. Evaluation of the Epigenetic Demethylation of NRF2, a Master Transcription Factor for Antioxidant Enzymes, in Colorectal Cancer. Rep Biochem Mol Biol. 2020;9(1):33-39. [DOI:10.29252/rbmb.9.1.33] [PMID] [PMCID]
2. Baylin SB, Jones PA. A decade of exploring the cancer epigenome-biological and translational implications. Nature Reviews Cancer. 2011;11(10):726-734. [DOI:10.1038/nrc3130] [PMID] [PMCID]
3. Zebardast S, Sahmani M, Mohammadi S, Foroughi F, Fard AD, Mohammadi Z, et al. The gene expression profile and DNA methylation pattern of CDH1 and DNMT1 genes in acute promyelocytic leukemia (APL). Rep Biochem Mol Biol. 2020;8(4):454-457.
4. Abazari O, Shafaei Z, Divsalar A, Eslami-Moghadam M, Ghalandari B, Saboury AA. Probing the biological evaluations of a new designed Pt (II) complex using spectroscopic and theoretical approaches: Human hemoglobin as a target. J Biomol Struct Dyn. 2016;34(5):1123-31. [DOI:10.1080/07391102.2015.1071280] [PMID]
5. Zhou X, Marks PA, Rifkind RA, Richon VM. Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A. 2001;98(19):10572-7. [DOI:10.1073/pnas.191375098] [PMID] [PMCID]
6. Romanski A, Bacic B, Bug G, Pfeifer H, Gul H, Remiszewski S, et al. Use of a novel histone deacetylase inhibitor to induce apoptosis in cell lines of acute lymphoblastic leukemia. haematologica. 2004;89(4):419-26.
7. Sasaki K, Yamagata T, Mitani K. Histone deacetylase inhibitors trichostatin A and valproic acid circumvent apoptosis in human leukemic cells expressing the RUNX1 chimera. Cancer Sci. 2008;99(2):414-22. [DOI:10.1111/j.1349-7006.2007.00699.x] [PMID]
8. Musavi H, Abazari O, Barartabar Z, Kalaki-Jouybari F, Hemmati-Dinarvand M, Esmaeili P, et al. The benefits of Vitamin D in the COVID-19 pandemic: biochemical and immunological mechanisms. Arch Physiol Biochem. 2020:1-9. [DOI:10.1080/13813455.2020.1826530] [PMID]
9. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: What are the cancer relevant targets? Cancer Lett. 2009;277(1):8-21. [DOI:10.1016/j.canlet.2008.08.016] [PMID]
10. Ouaïssi M, Sielezneff I, Silvestre R, Sastre B, Bernard J-P, Lafontaine JS, et al. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol. 2008;15(8):2318-28. [DOI:10.1245/s10434-008-9940-z] [PMID]
11. Mohamadi N, Kazemi SM, Mohammadian M, Milani AT, Moradi Y, Yasemi M. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: Anionic polymerization results. Asian Pac J Cancer Prev. 2017;18(3):629-632.
12. Toyota M, Kopecky KJ, Toyota M-O, Jair K-W, Willman CL, Issa J-PJ. Methylation profiling in acute myeloid leukemia. Blood. 2001;97(9):2823-9. [DOI:10.1182/blood.V97.9.2823] [PMID]
13. Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 2000;60(21):6039-44.
14. Greene RM. Effects of 5-Aza-2′-deoxycytidine (decitabine) on gene expression. Drug Metab Rev. 2018;50(2):193-207. [DOI:10.1080/03602532.2018.1437446] [PMID]
15. Abazari O, Divsalar A, Ghobadi R. Inhibitory effects of oxali-Platin as a chemotherapeutic drug on the function and structure of bovine liver catalase. J Biomol Struct Dyn. 2020;38(2):609-615. [DOI:10.1080/07391102.2019.1581088] [PMID]
16. Yuan Z, Sun Q, Li D, Miao S, Chen S, Song L, et al. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur J Med Chem. 2017;134:281-292. [DOI:10.1016/j.ejmech.2017.04.017] [PMID]
17. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: M inimum I nformation for Publication of Q uantitative Real-Time PCR experiments. Clin Chem. 2009;55(4):611-22. [DOI:10.1373/clinchem.2008.112797] [PMID]
18. Momparler RL, Samson J, Momparler LF, Rivard GE. Cell cycle effects and cellular pharmacology of 5-aza-2′-deoxycytidine. Cancer chemotherapy and pharmacology. 1984;13(3):191-4. [DOI:10.1007/BF00269027] [PMID]
19. Asadi A, Nezhad DY, Javazm AR, Khanicheragh P, Mashouri L, Shakeri F, et al. In vitro Effects of Curcumin on Transforming Growth Factor-β-mediated Non-Smad Signaling Pathway, Oxidative Stress, and Pro‐inflammatory Cytokines Production with Human Vascular Smooth Muscle Cells. Iran J Allergy Asthma Immunol. 2020;19(1):84-93. [DOI:10.18502/ijaai.v19i1.2421] [PMID]
20. Forsberg EC, Bresnick EH. Histone acetylation beyond promoters: long‐range acetylation patterns in the chromatin world. Bioessays. 2001;23(9):820-30. [DOI:10.1002/bies.1117] [PMID]
21. Karagianni P, Wong J. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene. 2007;26(37):5439-49. [DOI:10.1038/sj.onc.1210612] [PMID]
22. Moreno DA, Scrideli CA, Cortez MAA, de Paula Queiroz R, Valera ET, Da Silva Silveira V, et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol. 2010;150(6):665-73. [DOI:10.1111/j.1365-2141.2010.08301.x] [PMID]
23. Abbasi M, Abazari OO. Probing the Biological evaluations of a new designed Pt(II) complex using spectroscopic and theoretical approaches: Human Hemoglobin as a Target. J Biomol Struct Dyn. 2016;34(5):1123-31. [DOI:10.1080/07391102.2015.1071280] [PMID]
24. Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168-76. [DOI:10.1016/j.canlet.2008.10.047] [PMID]
25. Mohammadian M, Zeynali-Moghaddam S, Ansari MHK, Rasmi Y, Azarbayjani AF, Kheradmand F. Dihydropyrimidine Dehydrogenase Levels in Colorectal Cancer Cells Treated with a Combination of Heat Shock Protein 90 Inhibitor and Oxaliplatin or Capecitabine. Adv Pharm Bull. 2019;9(3):439-444. [DOI:10.15171/apb.2019.052] [PMID] [PMCID]
26. Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L, et al. HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics. 2012;7(12):1403-1412. [DOI:10.4161/epi.22674] [PMID] [PMCID]
27. Abazari O, Shafaei Z, Divsalar A, Eslami-Moghadam M, Ghalandari B, Saboury AA, et al. Interaction of the synthesized anticancer compound of the methyl-glycine 1, 10-phenanthroline platinum nitrate with human serum albumin and human hemoglobin proteins by spectroscopy methods and molecular docking. Journal of the Iranian Chemical Society. 2020:1601-1614. [DOI:10.1007/s13738-020-01879-1]
28. Hrebackova J, Hrabeta J, Eckschlager T. Valproic acid in the complex therapy of malignant tumors. Curr Drug Targets. 2010;11(3):361-79. [DOI:10.2174/138945010790711923] [PMID]
29. Chiao M-T, Cheng W-Y, Yang Y-C, Shen C-C, Ko J-L. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy. 2013;9(10):1509-26. [DOI:10.4161/auto.25664] [PMID]
30. Juengel E, Nowaz S, Makarevi J, Natsheh I, Werner I, Nelson K, et al. HDAC-inhibition counteracts everolimus resistance in renal cell carcinoma in vitro by diminishing cdk2 and cyclin A. Mol Cancer. 2014;13(1):152. [DOI:10.1186/1476-4598-13-152] [PMID] [PMCID]
31. Chodurek E, Kulczycka A, Orchel A, Aleksander-Konert E, Dzierzewicz Z. Effect of valproic acid on the proliferation and apoptosis of the human melanoma G-361 cell line. Acta Pol Pharm. 2014;71:917-21.
32. Oki Y, Jelinek J, Shen L, Kantarjian HM, Issa J-PJ. Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia. Blood. 2008;111(4):2382-4. [DOI:10.1182/blood-2007-07-103960] [PMID] [PMCID]
33. Aribi A, Borthakur G, Ravandi F, Shan J, Davisson J, Cortes J, et al. Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer. 2007;109(4):713-7. [DOI:10.1002/cncr.22457] [PMID]
34. Si J, Boumber YA, Shu J, Qin T, Ahmed S, He R, et al. Chromatin remodeling is required for gene reactivation after decitabine-mediated DNA hypomethylation. Cancer Res. 2010;70(17):6968-77. [DOI:10.1158/0008-5472.CAN-09-4474] [PMID] [PMCID]
35. Chaiyawat P, Sirikaew N, Budprom P, Klangjorhor J, Phanphaisarn A, Teeyakasem P, et
36. al. Expression profiling of DNA methyl transferase I (DNMT1) and efficacy of a DNA-hypomethylating agent (decitabine) in combination with chemotherapy in osteosarcoma. J Bone Oncol. 2020;25:100321. [DOI:10.1016/j.jbo.2020.100321] [PMID] [PMCID]
37. Li H, Wang Y, Pang X, Xie C, Deeg HJ, Wang H, et al. Elevated TWIST1 expression in myelodysplastic syndromes/acute myeloid leukemia reduces efficacy of hypomethylating therapy with decitabine. Haematologica. 2020;105(10):e502. [DOI:10.3324/haematol.2019.235325] [PMID] [PMCID]
38. Shafaei Z, Abazari O, Divsalar A, Ghalandari B, Poursoleiman A, Saboury AA, et al. Effect of a Synthesized Amyl-Glycine1, 10-Phenanthroline Platinum Nitrate on Structure and Stability of Human Blood Carrier Protein, Albumin: Spectroscopic and Modeling Approaches. J Fluoresc. 2017;27(5):1829-1838. [DOI:10.1007/s10895-017-2120-4] [PMID]
39. Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20(5):648-59. [DOI:10.1016/j.chembiol.2013.04.007] [PMID]
40. Ma J, Guo X, Zhang S, Liu H, Lu J, Dong Z, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and promotes apoptosis of esophageal squamous cell lines. Mol Med Rep. 2015;11(6):4525-31. [DOI:10.3892/mmr.2015.3268] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb