1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005-23. [
DOI:10.1002/hep.25762] [
PMID]
2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73-84. [
DOI:10.1002/hep.28431] [
PMID]
3. Forlano R, Mullish BH, Nathwani R, Dhar A, Thursz MR, Manousou P. Non-Alcoholic Fatty Liver Disease and Vascular Disease. Curr Vasc Pharmacol. 2020;19(3):269-279. [
DOI:10.2174/1570161118666200318103001] [
PMID]
4. Caligiuri A, Gentilini A, Marra F. Molecular Pathogenesis of NASH. Int J Mol Sci. 2016;17(9):1575. [
DOI:10.3390/ijms17091575] [
PMID] [
PMCID]
5. Braunersreuther V, Viviani GL, Mach F, Montecucco F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J Gastroenterol. 2012;18(8)727-35. [
DOI:10.3748/wjg.v18.i8.727] [
PMID] [
PMCID]
6. Geng T, Sutter A, Harland MD, Law BA, Ross JS, Lewin D, et al. SphK1 mediates hepatic inflammation in a mouse model of NASH induced by high saturated fat feeding and initiates proinflammatory signaling in hepatocytes. J Lipid Res. 2015;56(12):2359-71. [
DOI:10.1194/jlr.M063511] [
PMID] [
PMCID]
7. Mauer AS, Hirsova P, Maiers JL, Shah VH, Malhi H. Inhibition of sphingosine 1-phosphate signaling ameliorates murine nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2017;312(3):G300-G313. [
DOI:10.1152/ajpgi.00222.2016] [
PMID] [
PMCID]
8. Rachakonda VP, Reeves VL, Aljammal J, Rachel C, Joy Wb, James Tb, et al. DeLany, et al. Serum autotaxin is independently associated with hepatic steatosis in severely obese women. Obesity (Silver Spring). 2015;23(5):965-972. [
DOI:10.1002/oby.20960] [
PMID] [
PMCID]
9. Fujimori N, Umemura T, Kimura T, Tanaka N, Sugiura A, Yamazaki T, et al. Serum autotaxin levels are correlated with hepatic fibrosis and ballooning in patients with non-alcoholic fatty liver disease. World J Gastroenterol. 2018;24(11):1239-1249. [
DOI:10.3748/wjg.v24.i11.1239] [
PMID] [
PMCID]
10. Ioannou GN. The Role of Cholesterol in the Pathogenesis of NASH. Trends Endocrinol Metab. 2016;27(2):84-95. [
DOI:10.1016/j.tem.2015.11.008] [
PMID]
11. Anderson HL, Brodsky IE, Mangalmurti NS. The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity. J Immunol. 2018;201(5):1343-1351. [
DOI:10.4049/jimmunol.1800565] [
PMID] [
PMCID]
12. Buttari B, Profumo E, Riganò R. Crosstalk between Red Blood Cells and the Immune System and Its Impact on Atherosclerosis. Biomed Res Int. 2015;2015:616834. [
DOI:10.1155/2015/616834] [
PMID] [
PMCID]
13. Papadopoulos C, Panopoulou M, Anagnostopoulos K, Tentes I. Immune and Metabolic Interactions of Human Erythrocytes: A Molecular Perspective. Endocr Metab Immune Disord Drug Targets. 2021;21(5):843-853. [
DOI:10.2174/1871530320666201104115016] [
PMID]
14. Papadopoulos C, Anagnostopoulos K. Red Blood Cell Dysfunction in Non-Alcoholic Fatty Liver Disease: Marker and Mediator of Molecular Mechanisms. Maedica (Bucur). 2020;15(4):513-516.
15. Otogawa K, Kinoshita K, Fujii H, Sakabe M, Shiga R, Nakatani K, et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: Implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol. 2007;170(3):967-80. [
DOI:10.2353/ajpath.2007.060441] [
PMID] [
PMCID]
16. Unruh D, Srinivasan R, Benson T, Haigh S, Coyle D, Batraet N, et al. Red Blood Cell Dysfunction Induced by High-Fat Diet: Potential Implications for Obesity-Related Atherosclerosis. Circulation. 2015;132(20):1898-908. [
DOI:10.1161/CIRCULATIONAHA.115.017313] [
PMID] [
PMCID]
17. Lee SY, Song XY. Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research. Lawrence Erlbaum Associates. 2004;39(4):653-86. [
DOI:10.1207/s15327906mbr3904_4] [
PMID]
18. Hox JJCM, Schoot R van de, Matthijsse S. How few countries will do? Comparative survey analysis from a Bayesian perspective. Surv Res Methods. 2012;6(2):87-93.
19. R: The R Project for Statistical Computing. https://www.r-project.org/.
20. Kruschke JK. Bayesian estimation supersedes the t test. J Exp Psychol Gen. 2013;142(2):573-603. [
DOI:10.1037/a0029146] [
PMID]
21. Darbonne WC, Rice GC, Mohler MA, C A Hébert, A J Valente, J B Baker, et al. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J Clin Invest. 1991;88(4):1362-9. [
DOI:10.1172/JCI115442] [
PMID] [
PMCID]
22. Wei J, Zhao J, Schrott V, Zhang Y, Gladwin M, Bullocket G, et al. Red Blood Cells Store and Release Interleukin-33. J Investig Med. 2015;63(6):806-10. [
DOI:10.1097/JIM.0000000000000213] [
PMID] [
PMCID]
23. Wang Q, Ren J, Morgan S, Liu Z, Dou C, Liu B. Monocyte Chemoattractant Protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm. PLoS One. 2014;9(3):e92053. [
DOI:10.1371/journal.pone.0092053] [
PMID] [
PMCID]
24. Liese AM, Siddiqi MQ, Siegel JH, Denny T, Spolarics Z. Augmented TNF-alpha and IL-10 production by primed human monocytes following interaction with oxidatively modified autologous erythrocytes. J Leukoc Biol. 2001;70(2):289-96. [
DOI:10.1097/00024382-200106001-00202]
25. Buttari B, Profumo E, Di Cristofano C, Pietraforte D, Lionetti V, Capoano R, et al. Haemoglobin triggers chemotaxis of human monocyte-derived dendritic cells: Possible role in atherosclerotic lesion instability. Atherosclerosis. 2011;215(2):316-22. [
DOI:10.1016/j.atherosclerosis.2010.12.032] [
PMID]
26. Danesh A, Inglis HC, Jackman RP, Wu S, Deng X, Muench MO, et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 2014;123(5):687-96. [
DOI:10.1182/blood-2013-10-530469] [
PMID] [
PMCID]
27. Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2017;14(8):455-466. [
DOI:10.1038/nrgastro.2017.71] [
PMID] [
PMCID]
28. Martínez MC, Andriantsitohaina R. Extracellular vesicles in metabolic syndrome. Circ Res. 2017;120(10):1674-1686. [
DOI:10.1161/CIRCRESAHA.117.309419] [
PMID]
29. Xiong Z, Cavaretta J, Qu L, Stolz DB, Triulzi D, Lee JS. Red blood cell microparticles show altered inflammatory chemokine binding and release ligand upon interaction with platelets. Transfusion. 2011;51(3):610-21. [
DOI:10.1111/j.1537-2995.2010.02861.x] [
PMID] [
PMCID]
30. Choe H, Moore MJ, Owens CM, Wright PL, Vasilieva N, Liet W, et al. Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Mol Microbiol. 2005;55(5):1413-22. [
DOI:10.1111/j.1365-2958.2004.04478.x] [
PMID]
31. Yang W, Huang H, Wang Y, Yu X, Yang Z. High red blood cell distribution width is closely associated with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2014;26(2):174-8. [
DOI:10.1097/MEG.0b013e328365c403] [
PMID]
32. Guimarães-Nobre CC, Mendonça-Reis E, Passinho-da-Costa L, Miranda-Alves L, Clemilson Berto-Junior H. Signaling Pathway in the Osmotic Resistance Induced by Angiotensin II AT2 Receptor Activation in Human Erythrocytes. Rep Biochem Mol Biol. 2021;10(2):314-326. [
DOI:10.52547/rbmb.10.2.314] [
PMID] [
PMCID]
33. Huang C, Gao J, Wei T, Shen W. Angiotensin II-Induced Erythrocyte Senescence Contributes to Oxidative Stress. Rejuvenation Res. 2022;25(1):30-38. [
DOI:10.1089/rej.2021.0054] [
PMID]
34. Matthew Morris E, Fletcher JA, Thyfault JP, Rector RS. The role of angiotensin II in nonalcoholic steatohepatitis. Mol Cell Endocrinol. 2013;378(1-2):29-40. [
DOI:10.1016/j.mce.2012.04.013] [
PMID]