Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 346-353 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Husna N, Handayani N S N. Molecular and Haematological Characteristics of alpha-Thalassemia Deletions in Yogyakarta Special Region, Indonesia. rbmb.net. 2021; 10 (3) :346-353
URL: http://rbmb.net/article-1-682-en.html
Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Indonesia.
Abstract:   (1280 Views)
Background: alpha-Thalassemia is caused primarily by deletions of one to two alpha-globin genes and is characterized by absent or deficient production of alpha-globin protein. The South-East Asia (SEA) deletion, 3.7-kb and 4.2-kb deletions are the most common causes. The present study aimed to observe the molecular characteristics of this common alpha-Thalassemia deletions and analyse its haematological parameter.

Methods: Blood samples from 173 healthy volunteers from thalassemia carrier screening in Yogyakarta Special Region were used. Haematological parameters were analysed and used to predict the carrier subjects. Genotype of suspected carriers was determined using multiplex gap-polymerase chain reaction and its haematological parameters were compared. The boundary site of each deletion was determined by analysing the DNA sequences.

Results: Seventeen (9.8%) of the volunteers were confirmed to have alpha-Thalassemia trait. Of these, four genotypes were identified namely –α3.7/αα (58.8%), –α4.2/αα (5.9%), –α3.7/–α4.2 (5.9%) and – –SEA/αα (29.4%). The 5′ and 3′ breakpoints of SEA deletion were located at nt165396 and  nt184700 of chromosome 16, respectively. The breakpoint regions of 3.7-kb deletion were 176-bp long, whereas for 4.2-kb deletion were 321-bp long. The haematological comparison between normal and those with alpha-Thalassemia trait genotype indicated a significant difference in mean corpuscular volume (MCV) (p< 0.001) and mean corpuscular haemoglobin (MCH) (p< 0.001). As for identifying the number of defective genes, MCH parameter was more reliable (p= 0.003).

Conclusions: The resultant molecular and haematological features provide insight and direction for future thalassemia screening program in the region.
Full-Text [PDF 303 kb]   (537 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/04/9 | Accepted: 2021/05/13 | Published: 2021/12/5

1. Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ. A review of the molecular genetics of the human alpha globin gene cluster. Blood. 1989;73(5):1081-104. https://doi.org/10.1182/blood.V73.5.1081.bloodjournal7351081 [DOI:10.1182/blood.V73.5.1081.1081] [PMID]
2. Harteveld CL, Higgs DR. α-thalassaemia. Orphanet Journal of Rare Diseases. 2010;5:13. [DOI:10.1186/1750-1172-5-13] [PMID] [PMCID]
3. Goh LPW, Chong ETJ, Lee PC. Prevalence of alpha(α)-thalassemia in Southeast Asia (2010-2020): A meta-analysis involving 83,674 subjects. Int J Environ Res Public Health. 2020;17(20):7354. [DOI:10.3390/ijerph17207354] [PMID] [PMCID]
4. Husna N, Arif A Al, Putri C, Leonard E, Handayani NSN. Prevalence and Distribution of Thalassemia Trait Screening. J thee Med Sci (Berkala Ilmu Kedokteran). 2017;49(03):106-13. [DOI:10.19106/JMedSci004903201702]
5. Nurfitriani R, Abinawanto A, Noviyanti R, Trianti L, Nainggolan IM. Detection of Papua New Guinea Thalassemia Alpha Mutation in Gayo, Sumba, Ternate, and Timika Populations. Makara J Sci. 2014;18(2). [DOI:10.7454/mss.v18i2.3138]
6. Maharani EA, Soedarmono YSM, Nainggolan IM. Frequency of thalassemia carrier and Hb variant and the quality of stored donor blood. Medical Journal of Indonesia. 2014;23(4):209. [DOI:10.13181/mji.v23i4.766]
7. Widyastiti NS, Nainggolan IM, Kurnia EL, Retnoningrum D, Budiwiyono I. A rare case of Hb H disease caused by compound heterozygous for α thalasemia and Hb Quong Sze in Chinese Indonesian proband: a case report. Bali Med J. 2019;8(2):425. [DOI:10.15562/bmj.v8i2.1411]
8. Chong SS, Boehm CD, Higgs DR, Cutting GR. Single-tube multiplex-PCR screen for common deletional determinants of α-thalassemia. Blood. 2000;95(1):360-2. https://doi.org/10.1182/blood.V95.1.360 [DOI:10.1182/blood.V95.1.360.001k03_360_362] [PMID]
9. Singer ST. Variable clinical phenotypes of α-thalassemia syndromes. ScientificWorldJournal. 2009;9:615-25. [DOI:10.1100/tsw.2009.69] [PMID] [PMCID]
10. Akhavan-Niaki H, Youssefi Kamangari R, Banihashemi A, Kholghi Oskooei V, Azizi M, Tamaddoni A, et al. Hematologic features of alpha thalassemia carriers. Int J Mol Cell Med. 2012;1(3):162-7.
11. Borges E, Wenning MRSC, Kimura EM, Gervásio SA, Costa FF, Sonati MF. High prevalence of α-thalassemia among individuals with microcytosis and hypochromia without anemia. Braz J Med Biol Res. 2001;34(6):759-62. [DOI:10.1590/S0100-879X2001000600009] [PMID]
12. Setianingsih I, Harahap A, Nainggolan IM. Alpha thalassaemia in Indonesia: Phenotypes and molecular defects. Adv Exp Med Biol. 2003;531:47-56. [DOI:10.1007/978-1-4615-0059-9_4] [PMID]
13. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: An increasing global health problem. Bull World Health Organ. 2001;79(8):704-712.
14. Nava MP, Trejo JM, Aguilar-Luna C, Barros-Núñez P, de la Luz Chávez M, Magaña MT, et al. Molecular characterization of the - SEA alpha thalassemia allele in Mexican patients with HbH disease. Rev Investig Clin. 2006;58(4):313-7.
15. Ou-Yang H, Hua L, Mo QH, Xu XM. Rapid, accurate genotyping of the common -α4.2 thalassaemia deletion based on the use of denaturing HPLC. J Clin Pathol. 2004;57(2):159-63. [DOI:10.1136/jcp.2003.011130] [PMID] [PMCID]
16. Chow A, Ghassemifar R, Finlayson J. Alpha thalassaemia due to non-deletional mutations on the -3.7 alpha globin fusion gene: laboratory diagnosis and clinical importance. Pathology. 2013 Oct;45(6):591-4. [DOI:10.1097/PAT.0b013e32836526d7] [PMID]
17. Hung CC, Lee CN, Chen CP, Jong YJ, Hsieh WS, Lin WL, et al. Molecular assay of -α3.7 and -α4.2 deletions causing α-thalassemia by denaturing high-performance liquid chromatography. Clin Biochem. 2007;40(11):817-21. [DOI:10.1016/j.clinbiochem.2007.03.018] [PMID]
18. Gaafar T, ELBeshlawy A, Aziz M, Abdelrazik H. Rapid screening of β-Globin gene mutations by Real-Time PCR in Egyptian thalassemic children. African Journal of Health Sciences. 2008;13(3):70-7. [DOI:10.4314/ajhs.v13i3.30839]
19. Higgs DR. The Molecular Basis of a-Thalassemia. Cold Spring Harb Perspect Med. 2013;3(1):a011700. [DOI:10.1101/cshperspect.a011718] [PMID] [PMCID]
20. Sahiratmadja E, Seu MMV, Nainggolan IM, Mose JC, Panigoro R. Challenges in thalassemia carrier detection in a low resource setting area of eastern Indonesia: The use of erythrocyte indices. Mediterr J Hematol Infect Dis. 2021;13(1):e2021003. [DOI:10.4084/mjhid.2021.003] [PMID] [PMCID]
21. Chen M, Huang H, Chen L, Lin N, Zhang M, Lin Y, et al. First report of the spectrum of δ- globin gene mutations among women of reproductive age in Fujian area-Discrimination of δ-thalassemia, α-thalassemia, and Iron Deficiency Anemia. J Clin Lab Anal. 2020;34(11):e23479. [DOI:10.1002/jcla.23479]
22. Sattar Harbi N, Hussein Jawad A, Kadhum Alsalman F. Evaluation of Adipokines Concentration in Iraqi Patients with Major and Minor Beta Thalassemia. Reports Biochem Mol Biol. 2020;9(2):209-215. [DOI:10.29252/rbmb.9.2.209] [PMID] [PMCID]
23. Nainggolan IM, Harahap A, Ambarwati DD, Liliani R V, Megawati D, Swastika M, et al. Interaction of Hb Adana (HBA2: C.179G>A) with deletional and nondeletional α+-thalassemia mutations: Diverse hematological and clinical features. Hemoglobin. 2013;37(3):297-305. [DOI:10.3109/03630269.2013.775149] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb