Volume 10, Issue 4 (Vol.10 No.4 Jan 2022)                   rbmb.net 2022, 10(4): 633-639 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ismawati I, Romus I, Mukhyarjon M, Muthya A. Effect of Proteasome Inhibitor on Vascular Cell Adhesion Molecule-1 (VCAM-1) and Intercellular Adhesion Molecule-1 (ICAM-1) Expressions in Rat Model of Atherosclerosis. rbmb.net. 2022; 10 (4) :633-639
URL: http://rbmb.net/article-1-696-en.html
Department of Biochemistry, Faculty of medicine, Riau University, Pekanbaru, Indonesia.
Abstract:   (780 Views)
Background: The effect of proteasome inhibitors on atherosclerosis is known to vary depending on the atherosclerosis stage. Previous studies have shown that the highest proteasome expression in atherosclerotic lesions is at the progression stage. Adhesion molecules play a role in the progression stage of atherosclerosis, but no studies have analyzed the effect of proteasome inhibitors on the expression of adhesion molecules at this stage.

Methods: This experimental study aimed to analyze the effect of a proteasome inhibitor, namely bortezomib, on the vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule1 (ICAM-1) expressions in blood vessels of rat model of atherosclerosis at the progression stage. This study used 18 male Wistar rats divided into three groups, i.e. group I that is the control group given standard feed, group II induced by atherosclerosis, and group III induced by atherosclerosis and given bortezomib. Atherosclerosis induction was performed using vitamin D3 (700,000 IU/kg) orally by gastric intubation on the 1st day and atherogenic feed given for four days. Bortezomib 50 μg/kgBW/day was administered intra-peritoneally. The expression
of VCAM-1 and ICAM-1 molecules was measured using immunohistochemistry and analyzed quantitatively using Adobe Photoshop software.

Results: The statistical test showed differences in VCAM-1 expression between atherosclerosis + Bortezomib group and atherosclerosis group, but there were no differences in the expression of ICAM-1 and atherosclerotic lesions between the groups.

Conclusions: Administration of bortezomib 50μg/kg for four days in progressive atherosclerosis model rats can inhibit VCAM-1 expression, although it does not affect ICAM-1 expression and cannot inhibit atherosclerotic lesion formation.
Full-Text [PDF 319 kb]   (367 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2021/04/30 | Accepted: 2021/05/23 | Published: 2022/02/7

References
1. Barquera S, Pedroza-Tobías A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R, et al. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch Med Res. 2015;46(5):328-38. [DOI:10.1016/j.arcmed.2015.06.006] [PMID]
2. Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 2015;21(5):307-18. [DOI:10.1016/j.molmed.2015.02.003] [PMID] [PMCID]
3. Alizadeh S, Mirshafiey A, Djalali M, Alvandi E, Honarvar NM, Javanbakht MH. Vitamin D3 Induces Gene Expression of Ox-LDL Scavenger Receptors in Streptozotocin-Induced Diabetic Rat Aortas: New Insight into the Role of Vitamin D in Diabetic Atherosclerosis. Rep Biochem Mol Biol. 2018;6(2):170-177.
4. Cheraghi M, Ahmadvand H, Maleki A, Babaeenezhad E, Shakiba S, Hassanzadeh F. Oxidative stress status and liver markers in coronary heart disease. Reports Biochem Mol Biol. 2019;8(1):49-55.
5. Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol. 2019;73(1):22-27. [DOI:10.1016/j.jjcc.2018.05.010] [PMID]
6. Čejková S, Králová-Lesná I, Poledne R. Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Cor Vasa. 2016;58(4):e419-25. [DOI:10.1016/j.crvasa.2015.08.002]
7. Wang F, Lerman A, Herrmann J. Dysfunction of the ubiquitin-proteasome system in atherosclerotic cardiovascular disease. Am J Cardiovasc Dis. 2015;5(1):83-100.
8. Serasanambati M., Chilakapati S.R. Function of nuclear factor kappa B (NF-kB) in human diseases-a review. South Indian J. Biol. Sci. 2016;2:368-387. [DOI:10.22205/sijbs/2016/v2/i4/103443]
9. Ismawati, Oenzil F, Yanwirasti, Yerizel E. Changes in expression of proteasome in rats at different stages of atherosclerosis. Anat Cell Biol. 2016;49(2):99-106. [DOI:10.5115/acb.2016.49.2.99] [PMID] [PMCID]
10. Hedin U, Matic LP. Recent advances in therapeutic targeting of inflammation in atherosclerosis. J Vasc Surg. 2019;69(3):944-951. [DOI:10.1016/j.jvs.2018.10.051] [PMID]
11. Qadir MI, Manzoor A, Akash MSH. Potential role of medicinal plants for anti-atherosclerosis activity. Bangladesh J Pharmacol. 2018; 13: 59-66. [DOI:10.3329/bjp.v13i1.33478]
12. Appavu R. Bortezomib in Anti-Cancer Activity: A Potential Drug. Global Journal of Cancer Therapy. 2016;2(1). [DOI:10.17352/gjct.000007]
13. Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology. Pharmacol Rev. 2019;71(2):170-197. [DOI:10.1124/pr.117.015370] [PMID] [PMCID]
14. Wilck N, Fechner M, Dreger H, Hewing B, Arias A, Meiners S, et al. Attenuation of early atherogenesis in low-density lipoprotein receptor-deficient mice by proteasome inhibition. Arterioscler Thromb Vasc Biol. 2012;32(6):1418-26. [DOI:10.1161/ATVBAHA.112.249342] [PMID]
15. Ludwig A, Fechner M, Wilck N, Meiners S, Grimbo N, Baumann G, et al. Potent anti-inflammatory effects of low-dose proteasome inhibition in the vascular system. J Mol Med (Berl). 2009;87(8):793-802. [DOI:10.1007/s00109-009-0469-9] [PMID]
16. Ismawati, Oenzil F, Yanwirasti, Yerizel E. Analisis Konsentrasi Low Density Lipoprotein Teroksidasi Serum pada Tahapan Aterosklerosis. J Kedokt Brawijaya. 2017;29(4). [DOI:10.21776/ub.jkb.2017.029.04.11]
17. Ismawati I, Asni E, Mukhyarjon M, Romus I. Alpha Lipoic Acid Inhibits Expression of Intercellular Adhesion Molecule-1 (ICAM-1) in Type 2 Diabetic Mellitus Rat Models. The Indonesian Biomedical Journa. 2020;12(1):40-4. [DOI:10.18585/inabj.v12i1.906]
18. Wilck N, Fechner M, Dan C, Stangl V, Stangl K, Ludwig A. The effect of low-dose proteasome inhibition on pre-existing atherosclerosis in LDL receptor-deficient mice. Int J Mol Sci. 2017;18(4):781. [DOI:10.3390/ijms18040781] [PMID] [PMCID]
19. Herrmann J, Lerman LO, Lerman A. On to the road to degradation: Atherosclerosis and the proteasome. Cardiovasc Res. 2010;85(2):291-302. [DOI:10.1093/cvr/cvp333] [PMID] [PMCID]
20. Wilck N, Ludwig A. Targeting the ubiquitin-proteasome system in atherosclerosis: Status Quo, challenges, and perspectives. Antioxid Redox Signal. 2014;21(17):2344-63. [DOI:10.1089/ars.2013.5805] [PMID]
21. Olshina MA, Ben-Nissan G, Sharon M. Functional regulation of proteins by 20S proteasome proteolytic processing. Cell Cycle. 2018;17(4):393-394. [DOI:10.1080/15384101.2017.1414682] [PMID] [PMCID]
22. Chu L-Y, Hsueh Y-C, Cheng H-L, Wu KK. Cytokine-induced autophagy promotes long-term VCAM-1 but not ICAM-1 expression by degrading late-phase IκBα. Sci Rep. 2017;7(1):1-13. [DOI:10.1038/s41598-017-12641-8] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb