Volume 10, Issue 2 (Vol.10 No.2 Jul 2021)                   rbmb.net 2021, 10(2): 327-333 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bakhtiyari N, Sharifi A, Aftabi Y, Gilani N, Zafari V, Zafari V, et al . Association Between NOX4 And Nrf2 Genes in Non-Small-Cell Lung Carcinoma: A Case-Control Study. rbmb.net. 2021; 10 (2) :327-333
URL: http://rbmb.net/article-1-705-en.html
Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Abstract:   (707 Views)
Background: Epithelial malignancy in lung cancer, which is initiated with myofibroblast differentiation and remodeling, promotes hypoxia and intracellular ROS generation most affected by the prototypical enzyme, NADPH oxidase 4 (NOX4). In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a critical transcription factor by stimulating antioxidant proteins as redox homeostasis regulators. The aim of this study was to investigate a possible correlation between lung tissue NOX4 and Nrf2 genes (NOX4 and Nrf2) mRNA expression and bronchoalveolar lavage fluid (BALF) protein expression in non-small-cell lung carcinoma (NSCLC) patients.

Methods: Samples from 25 patients with various NSCLC types and stages and 20 healthy controls were collected. NOX4 and Nrf2 mRNA were measured by qRT-PCR, and protein by western blot analysis.

Results: NOX4 mRNA and protein expression was significantly up-regulated in NSCLC patients’ lung tissues and BALFs (p= 0.03 and 0.01, respectively). In addition, by adjusting for age, sex, and NSCLC types and stages, a significant and positive correlation was observed between NOX4 and Nrf2 mRNA expression (r= 0.927, p= 0.001). This was also true when not adjusted as above (r= 0.944, p< 0.001).

Conclusions: NOX4 mRNA and protein expression is significantly up-regulated in NSCLC patients’ lung tissues and BALFs, and NOX4 and Nrf2 mRNA expression is positively correlated in NSCLC tissues.
 
Full-Text [PDF 305 kb]   (345 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/05/14 | Accepted: 2021/05/25 | Published: 2021/08/26

References
1. Vergnenegre A, Chouaid C. Review of economic analyses of treatment for non-small-cell lung cancer (NSCLC). Expert Rev Pharmacoecon Outcomes Res 2018;18(5):519-528. [DOI:10.1080/14737167.2018.1485099] [PMID]
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68(1):7-30. https://doi.org/10.3322/caac.21590 https://doi.org/10.3322/caac.21442 https://doi.org/10.3322/caac.21551 https://doi.org/10.3322/caac.21332 https://doi.org/10.3322/caac.21654 [DOI:10.3322/caac.21387]
3. Esfandi F, Fallah H, Arsang-Jang S, Taheri M, Ghafouri-Fard S. The Expression of CCAT2, UCA1, PANDA and GHET1 Long Non-coding RNAs in Lung Cancer. Rep Biochem Mol Biol 2019;8(1):36-41.
4. Li H, Peng C, Zhu C, Nie S, Qian X, Shi Z, et al. Hypoxia promotes the metastasis of pancreatic cancer through regulating NOX4/KDM5A-mediated histone methylation modification changes in a HIF1A-independent manner. Clin Epigenetics 2021;13(1). [DOI:10.1186/s13148-021-01016-6] [PMID] [PMCID]
5. Kim SJ, Kim YS, Kim JH, Jang HY, Ly DD, Das R, et al. Activation of ERK1/2-mTORC1-NOX4 mediates TGF-β1-induced epithelial-mesenchymal transition and fibrosis in retinal pigment epithelial cells. Biochemical and Biophysical Research Communications. 2020;529(3):747-752. https://doi.org/10.1016/j.bbrc.2020.06.034 [DOI:10.1006/bbrc.2000.2676] [PMID]
6. Witte D, Bartscht T, Kaufmann R, Pries R, Settmacher U, Lehnert H, et al. TGF-β1-induced cell migration in pancreatic carcinoma cells is RAC1 and NOX4-dependent and requires RAC1 and NOX4-dependent activation of p38 MAPK. Oncol Rep. 2017;38(6):3693-3701. [DOI:10.3892/or.2017.6027] [PMID]
7. El-Sayed Ibrahim N, Morsy H, Abdelgwad M. The Comparative Effect of Nisin and Thioridazine as Potential Anticancer Agents on Hepatocellular Carcinoma. Rep Biochem Mol Biol. 2021;9(4):452-462. [DOI:10.52547/rbmb.9.4.452] [PMID] [PMCID]
8. Meitzler JL, Konaté MM, Doroshow JH. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys. 2019; 675:108076. [DOI:10.1016/j.abb.2019.108076] [PMID]
9. Filaire E, Dupuis C, Galvaing G, Aubreton S, Laurent H, Richard R, et al. Lung cancer: what are the links with oxidative stress, physical activity and nutrition. Lung Cancer. 2013;82(3):383-9. [DOI:10.1016/j.lungcan.2013.09.009] [PMID]
10. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603-1616. [DOI:10.1016/j.freeradbiomed.2010.09.006] [PMID] [PMCID]
11. Hollins F, Sutcliffe A, Gomez E, Berair R, Russell R, Szyndralewiez C, et al. Airway smooth muscle NOX4 is upregulated and modulates ROS generation in COPD. Respir Res. 2016;17(1):84. [DOI:10.1186/s12931-016-0403-y] [PMID] [PMCID]
12. Parent RA. Comparative Biology of the Normal Lung (Second Edition). San Diego: Academic Press; 2015.
13. Guo S, Chen X. The human Nox4: gene, structure, physiological function and pathological significance. J Drug Target. 2015;23(10):888-96. [DOI:10.3109/1061186X.2015.1036276] [PMID]
14. Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ. NADPH oxidases in lung health and disease. Antioxid Redox Signal. 2014;20(17):2838-53. [DOI:10.1089/ars.2013.5608] [PMID] [PMCID]
15. Jahan N, Chowdhury A, Li T, Xu K, Wei F, Wang S. Neferine improves oxidative stress and apoptosis in benign prostate hyperplasia via Nrf2-ARE pathway. Redox Rep. 2021;26(1):1-9. [DOI:10.1080/13510002.2021.1871814] [PMID] [PMCID]
16. Koundouros N, Poulogiannis G. Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer. Front Oncol. 2018;8:160. [DOI:10.3389/fonc.2018.00160] [PMID] [PMCID]
17. Wu Q, Yao B, Li N, Ma L, Deng Y, Yang Y, et al. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells. Exp Cell Res. 2017;352(2):245-254. [DOI:10.1016/j.yexcr.2017.02.014] [PMID]
18. Cappellari JO, Haponik EF. Bronchoscopic needle aspiration biopsy. Am J Clin Pathol. 2000;113(5 Suppl 1): S97-108. [DOI:10.1309/A9VE-VXVW-NRA9-49KY] [PMID]
19. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. [DOI:10.1093/nar/gks596] [PMID] [PMCID]
20. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(Web Server issue):W5-9. [DOI:10.1093/nar/gkn201] [PMID] [PMCID]
21. Aftabi Y, Zarredar H, Sheikhi M, Khoshkam Z, A HC. Induction of AHR Gene Expression in Colorectal Cancer Cell Lines by Cucurbitacin D, E, and I. J Cell Mol Res 2019;10:67-75.
22. Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy. Cancer Res 2018;78(21):6040-6047. [DOI:10.1158/0008-5472.CAN-18-0980] [PMID]
23. Li J, Xiong C, Xu P, Luo Q, Zhang R. Puerarin induces apoptosis in prostate cancer cells via inactivation of the Keap1/Nrf2/ARE signaling pathway. Bioengineered 2021;12(1):402-413. [DOI:10.1080/21655979.2020.1868733] [PMID]
24. Silva MM, Rocha CRR, Kinker GS, Pelegrini AL, Menck CFM. The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells. Sci Rep 2019;9(1):17639. [DOI:10.1038/s41598-019-54065-6] [PMID] [PMCID]
25. Lim JKM, Leprivier G. The impact of oncogenic RAS on redox balance and implications for cancer development. Cell Death Dis 2019;10(12):955. [DOI:10.1038/s41419-019-2192-y] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb