Volume 11, Issue 1 (Vol.11 No.1 Apr 2022)                   rbmb.net 2022, 11(1): 102-110 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jasim Al-Thabhawee M H, Muttaleb Al-Dahmoshi H O. Molecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates. rbmb.net 2022; 11 (1) :102-110
URL: http://rbmb.net/article-1-719-en.html
Biology Department, College of Science, University of Babylon, Iraq.
Abstract:   (2915 Views)
Background: Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient acquisition. 

Methods: The study include investigation of 50 isolates of MDRPA for transport secretion system and resistance for antibiotics. Molecular diagnosis using P. aeruginosa specific primer pairs, investigation of AprF, HasF, XcpQ, HxcQ, PscC, CdrB, CupB3, and Hcp using specific primer pairs by PCR were also
performed.

Results: The results revealed high resistance to beta lactam antibiotics (78% for ceftazidime, 78% for cefepime and 46% for piperacillin) can indicate possessing of isolates for beta lactamases and this confirmed by dropping resistance to piperacillin to 16% when combined with tazobactam. Also, the results shown the ability of MDRPA for pyocyanin biosynthesis using the system of genes.

Conclusions: The current study conclude that all isolates of P. aeruginosa were highly virulent due to their possessing of all transport secretion system to deliver different effector proteins with possible harmful effects of these proteins.
Full-Text [PDF 286 kb]   (1209 Downloads)    
Type of Article: Original Article | Subject: Microbiology
Received: 2021/05/24 | Accepted: 2021/09/19 | Published: 2022/05/26

References
1. Al-Dahmoshi HO, Al-Khafaji NS, Jeyad AA, Shareef HK, Al-Jebori RF. Molecular detection of some virulence traits among Pseudomonas aeruginosa isolates, Hilla-Iraq. Biomedical and Pharmacology Journal. 2018;11(2):835-42. [DOI:10.13005/bpj/1439]
2. Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol spectr. 2016;4(1):10. [DOI:10.1128/microbiolspec.VMBF-0012-2015] [PMID] [PMCID]
3. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016;306(1):48-58. [DOI:10.1016/j.ijmm.2015.11.004] [PMID]
4. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nature Reviews Microbiology. 2015;13(6):343-359. [DOI:10.1038/nrmicro3456] [PMID]
5. Maresso AW. Bacterial Secretion Systems, in Bacterial Virulence- A Conceptual Primer, Springer Nature Switzerland AG, Cham, Switzerland. 2019. 103-114. [DOI:10.1007/978-3-030-20464-8_9]
6. Liu H, de Souza FZR, Liu L, Chen BS. The use of marine-derived fungi for preparation of enantiomerically pure alcohols. Appl Microbiol Biotechnol. 2018;102(3):1317-1330. [DOI:10.1007/s00253-017-8707-5] [PMID]
7. Létoffé S, Nato F, Goldberg ME, Wandersman C. Interactions of HasA, a bacterial haemophore, with haemoglobin and with its outer membrane receptor HasR. Mol Microbiol. 1999;33(3):546-55. [DOI:10.1046/j.1365-2958.1999.01499.x] [PMID]
8. Duong F, Bonnet E, Géli V, Lazdunski A, Murgier M, Filloux A. The AprX protein of Pseudomonas aeruginosa: a new substrate for the Apr type I secretion system. Gene. 2001;262(1-2):147-53. [DOI:10.1016/S0378-1119(00)00541-2]
9. Sapriel G, Wandersman C, Delepelaire P. The SecB chaperone is bifunctional in Serratia marcescens: SecB is involved in the Sec pathway and required for HasA secretion by the ABC transporter. J Bacteriol. 2003;185(1):80-8. [DOI:10.1128/JB.185.1.80-88.2003] [PMID] [PMCID]
10. Thomas S, Holland IB, Schmitt L. The Type 1 secretion pathway - the hemolysin system and beyond. Biochim Biophys Acta. 2014;1843(8):1629-41. [DOI:10.1016/j.bbamcr.2013.09.017] [PMID]
11. Filloux A. The underlying mechanisms of type II protein secretion. Biochim Biophys Acta. 2004;1694:(1-3):163-79. [DOI:10.1016/j.bbamcr.2004.05.003] [PMID]
12. Korotkov KV, Gonen T, Hol WG. Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci. 2011;36(8):433-43. [DOI:10.1016/j.tibs.2011.04.002] [PMID] [PMCID]
13. Folders J, Algra J, Roelofs MS, Van Loon LC, Tommassen J, Bitter W. Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J Bacteriol. 2001;183(24):7044-52. [DOI:10.1128/JB.183.24.7044-7052.2001] [PMID] [PMCID]
14. Ball G, Durand E, Lazdunski A, Filloux A. A novel type II secretion system in Pseudomonas aeruginosa. Mol Microbiol. 2002;43(2):475-85. [DOI:10.1046/j.1365-2958.2002.02759.x] [PMID]
15. Dortet L, Lombardi C, Cretin F, Dessen A, Filloux A. Pore-forming activity of the Pseudomonas aeruginosa type III secretion system translocon alters the host epigenome. Nat Microbiol. 2018;3(3):378-386. [DOI:10.1038/s41564-018-0109-7] [PMID]
16. Filloux A. Protein secretion systems in Pseudomonas aeruginosa: an essay on diversity, evolution, and function. Front Microbiol. 2011;2:155. [DOI:10.3389/fmicb.2011.00155] [PMID] [PMCID]
17. He J, Baldini RL, Déziel E, Saucier M, Zhang Q, Liberati NT, et al. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A. 2004;101(8):2530-5. [DOI:10.1073/pnas.0304622101] [PMID] [PMCID]
18. Hospenthal MK, Costa TRD, Waksman G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nature Reviews Microbiology. 2017;15(6):365-379. [DOI:10.1038/nrmicro.2017.40] [PMID]
19. Christie PJ. The mosaic type IV secretion systems. EcoSal Plus. 2016;7(1):10. [DOI:10.1128/ecosalplus.ESP-0020-2015] [PMID] [PMCID]
20. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol. 2010;75(4):827-42. [DOI:10.1111/j.1365-2958.2009.06991.x] [PMID] [PMCID]
21. Ruer S, Ball G, Filloux A, De Bentzmann S. The 'Pusher', a novel protein transporter involved in fimbrial assembly and TpsA secretion. EMBO J. 2008;27(20):2669-80. [DOI:10.1038/emboj.2008.197] [PMID] [PMCID]
22. Silverman JM, Agnello DM, Zheng H, Andrews BT, Li M, Catalano CE, et al. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell. 2013;51(5):584-93. [DOI:10.1016/j.molcel.2013.07.025] [PMID] [PMCID]
23. Ma J, Sun M, Pan Z, Song W, Lu C, Yao H. Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 2018;7(1):49. [DOI:10.1038/s41426-018-0042-0] [PMID] [PMCID]
24. Varshan R, Prakasam G. Detection of blaVIM gene encoding Metallo Beta Lactamase resistance among clinical isolates of Pseudomonas aeruginosa. Research J Pharm and Tech. 2016; 9(9):1465-1468. [DOI:10.5958/0974-360X.2016.00284.5]
25. Al-Byti AM, Chakmakchy SA, Waheeb AA, Alazzawy MA. Multidrug-Resistant Pseudomonas aeruginosa Isolated from surgical sites after plastic surgery in Kirkuk city-Iraq. Research Journal of Pharmacy and Technology. 2020;13(1):335-8. [DOI:10.5958/0974-360X.2020.00067.0]
26. Varshitha A, Gopinath P. Detection of bla TEM-1 gene for ESBL production among clinical isolates of Pseudomonas aeruginosa. Research Journal of Pharmacy and Technology. 2016;9(10):1623. [DOI:10.5958/0974-360X.2016.00323.1]
27. Abbas MK, Kadhum DA, Shabeeb AK, Mohammed SA. Combination effect of ciprofloxacin and streptomycin with cefotaxime against multi-drug resistant Pseudomonas aeruginosa from different clinical samples. Research Journal of Pharmacy and Technology. 2020;13(9):4403. [DOI:10.5958/0974-360X.2020.00779.9]
28. Mahaseth SN, Chaurasia L, Jha B, Sanjana RK. Prevalence and antimicrobial susceptibility pattern of Pseudomonas aeruginosa isolated from various clinical samples in a tertiary Care Hospital. Janaki Medical College Journal of Medical Science. 2020;8(2):11-17. [DOI:10.3126/jmcjms.v8i2.33972]
29. Jyothi P, Shahapur PR, Metri BC. Comparison of various phenotypic Tests for Detection of Metallo-beta-lactamase in Pseudomonas aeruginosa isolates at a Tertiary Care Centre. Research Journal of Pharmacy and Technology. 2021;14(2):1022-1024. [DOI:10.5958/0974-360X.2021.00182.7]
30. Saleh MM, Sadeq RA, Latif HKA, Abbas HA, Askoura M. Antimicrobial susceptibility and resistance profile of Pseudomonas aeruginosa isolates from patients at an Egyptian hospital. Research Journal of Pharmacy and Technology. 2018;11(8):3268. [DOI:10.5958/0974-360X.2018.00601.7]
31. Sreeja MK, Gowrishankar NL, Adisha S, Divya KC. Antibiotic resistance-reasons and the most common resistant pathogens - a review. Research Journal of Pharmacy and Technology. 2017;10(6):1886-90. [DOI:10.5958/0974-360X.2017.00331.6]
32. Performance standards for antimicrobial susceptibility testing. 29th ed. Clinical and Laboratory Standards Institute (CLSI). Supplement M100; 2019.
33. Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004;42(5):2074-9. [DOI:10.1128/JCM.42.5.2074-2079.2004] [PMID] [PMCID]
34. Ozdemir K, Dizbay M, Uğraş Dikmen AS. Incidence and risk factors of nosocomial infections in elderly and adult patients in intensive care units. Turk Geriatri Dergisi. 2013;16(2):155-160.
35. Li Y, Ren L, Zou J. Risk factors and prevention strategies of nosocomial infection in geriatric patients. Canadian Journal of Infectious Diseases and Medical Microbiology. 2019;(1):1-5. [DOI:10.1155/2019/6417959] [PMID] [PMCID]
36. Trinh TD, Zasowski EJ, Claeys KC, Lagnf AM, Kidambi S, Davis SL, et al. Multidrug-resistant Pseudomonas aeruginosa lower respiratory tract infections in the intensive care unit: prevalence and risk factors. Diagn Microbiol Infect Dis. 2017;89(1):61-66. [DOI:10.1016/j.diagmicrobio.2017.06.009] [PMID]
37. Karami P, Mohajeri P, Yousefi Mashouf RY, Karami M, Yaghoobi MH, Dastan D, et al. Molecular characterization of clinical and environmental Pseudomonas aeruginosa isolated in a burn center. Saudi J Biol Sci. 2019; 26(7):1731-1736. [DOI:10.1016/j.sjbs.2018.07.009] [PMID] [PMCID]
38. Mulcahy LR, Burns JL, Lory S, Lewis K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol. 2010;192(23):6191-9. [DOI:10.1128/JB.01651-09] [PMID] [PMCID]
39. Breidenstein EB, de la Fuente-Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19(8):419-26. [DOI:10.1016/j.tim.2011.04.005] [PMID]
40. Tannous E, Lipman S, Tonna A, Hector E, Hussein Z, Stein M, et al. Time above the MIC of piperacillin-tazobactam as a predictor of outcome in Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother. 2020; 22;64(8). [DOI:10.1128/AAC.02571-19] [PMID] [PMCID]
41. Winstanley C, Fothergill JL. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett. 2009;290(1):1-9. [DOI:10.1111/j.1574-6968.2008.01394.x] [PMID]
42. Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins (Basel). 2016;8(8):236. [DOI:10.3390/toxins8080236] [PMID] [PMCID]
43. Sabharwal N, Dhall S, Chhibber S, Harjai K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. Int J Mol Epidemiol Genet. 2014;5(3):125-34.
44. Banihashemi K, Sobouti B, Mehregan I, Bakhtiari R, Amirmozafari N. The construction of carbon nanotubes containing an anti-bacterial chemical component and its effect on MDR and XDR isolates of Pseudomonas aeruginosa. Rep Biochem Mol Biol. 2020;9(1):89-96. [DOI:10.29252/rbmb.9.1.89] [PMID] [PMCID]
45. Kaviani R, Pouladi I, Niakan M, Mirnejad R. Molecular detection of Adefg efflux pump genes and their contribution to antibiotic resistance in Acinetobacter baumannii clinical isolates. Rep Biochem Mol Biol. 2020;8(4):413-418.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb