Volume 10, Issue 3 (Vol.10 No.3 Oct 2021)                   rbmb.net 2021, 10(3): 471-476 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najari Hanjani P, Golalipour M. Circadian Oscillation of Natural Antisense Transcripts Related to Human Core Clock Genes. rbmb.net. 2021; 10 (3) :471-476
URL: http://rbmb.net/article-1-766-en.html
Cellular and Molecular Research center, Golestan university of Medical science, Gorgan, Iran
Abstract:   (1130 Views)
Background: Circadian clocks are autonomous intracellular oscillators that synchronize metabolic and physiological processes with the external signals. So, misalignment of environmental and endogenous circadian rhythms leads to disruption of biological activities in living organisms. Noncoding transcripts
including antisense RNAs are an important component of the molecular clocks. Commonly, the antisense transcripts are involved in the regulation of gene expression. PER2AS and CRY1AS are the only known Natural Antisense Transcripts (NAT) among the core clock genes, which overlap with the PER2 and CRY1 genes, respectively. In this study, we hypothesized that PER2AS and CRY1AS like the other clock genes, exhibit the oscillatory behavior in a 24-hour period and affect the expression of PER2 and CRY1.

Methods: First, the A549 cell line was cultured under standard conditions. After horse serum shock, RNA extraction and cDNA synthesis was performed; then the expression fluctuations of PER2AS, CRY1AS, PER2, and CRY1 were measured with Real-time PCR. 

Results: Our result showed that PER2AS and CRY1AS had similar oscillation patterns with their sense strand during 24-hour period.

Conclusions: Therefore, we suggested that PER2AS and CRY1AS transcripts probably by preventing the interaction of miRNAs with PER2 and CRY1 mRNAs, influence the expression of them, positively.
Full-Text [PDF 270 kb]   (408 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2021/08/7 | Accepted: 2021/09/6 | Published: 2021/12/5

References
1. Relógio A, Westermark PO, Wallach T, Schellenberg K, Kramer A, Herzel H. Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol. 2011;7(12):e1002309. [DOI:10.1371/journal.pcbi.1002309] [PMID] [PMCID]
2. Mohamadian S, Golalipour M, Yazdani Y, Farazmandfar T, Tabarraei A, Shahbazi M. Oscillation in expression of Adenylyl Cyclase isoforms: new insight to regulation of molecular clock. Biological Rhythm Research. 2017;48(1):113-9. [DOI:10.1080/09291016.2016.1234756]
3. Pickel L, Sung H-K. Feeding rhythms and the circadian regulation of metabolism. Frontiers in nutrition. 2020;7:39. [DOI:10.3389/fnut.2020.00039] [PMID] [PMCID]
4. Guan D, Xiong Y, Trinh TM, Xiao Y, Hu W, Jiang C, et al. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science. 2020;369(6509):1388-1394. [DOI:10.1126/science.aba8984] [PMID] [PMCID]
5. Rijo-Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome medicine. 2019;11(1):1-16. [DOI:10.1186/s13073-019-0704-0] [PMID] [PMCID]
6. Hernández-Rosas F, López-Rosas CA, Saavedra-Vélez MV. Disruption of the molecular circadian clock and cancer: an epigenetic link. Biochem Genet. 2020;58(1):189-209. [DOI:10.1007/s10528-019-09938-w] [PMID]
7. Ye Y, Xiang Y, Ozguc FM, Kim Y, Liu C-J, Park PK, et al. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst. 2018;6(3):314-28.e2. [DOI:10.1016/j.cels.2018.01.013] [PMID] [PMCID]
8. Chen Z, Liu P, Li C, Yongluo, Chen I, Liang W, et al. Deregulated expression of the clock genes in gliomas. Technol Cancer Res Treat. 2013;12(1):91-7. [DOI:10.7785/tcrt.2012.500250] [PMID]
9. Roenneberg T, Merrow M. The circadian clock and human health. Curr Biol. 2016;26(10):R432-43. [DOI:10.1016/j.cub.2016.04.011] [PMID]
10. Pett JP, Korenčič A, Wesener F, Kramer A, Herzel H. Feedback loops of the mammalian circadian clock constitute repressilator. PLoS computational biology. 2016;12(12):e1005266. [DOI:10.1371/journal.pcbi.1005266] [PMID] [PMCID]
11. Koike N, Yoo S-H, Huang H-C, Kumar V, Lee C, Kim T-K, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. science. 2012;338(6105):349-54. [DOI:10.1126/science.1226339] [PMID] [PMCID]
12. Angelousi A, Kassi E, Ansari-Nasiri N, Randeva H, Kaltsas G, Chrousos G. Clock genes and cancer development in particular in endocrine tissues. Endocr Relat Cancer. 2019;26(6):R305-R317. [DOI:10.1530/ERC-19-0094] [PMID]
13. Lindsay MA, Griffiths-Jones S, Wight M, Werner A. The functions of natural antisense transcripts. Essays Biochem. 2013;54:91-101. [DOI:10.1042/bse0540091] [PMID] [PMCID]
14. Barman P, Reddy D, Bhaumik SR. Mechanisms of antisense transcription initiation with implications in gene expression, genomic integrity and disease pathogenesis. Non-coding RNA. 2019;5(1):11. [DOI:10.3390/ncrna5010011] [PMID] [PMCID]
15. Halley P, Khorkova O, Wahlestedt C. Natural antisense transcripts as therapeutic targets. Drug Discov Today Ther Strateg. 2013;10(3):e119-e125. [DOI:10.1016/j.ddstr.2013.03.001] [PMID] [PMCID]
16. Zhao Y, Liu Y, Lin L, Huang Q, He W, Zhang S, et al. The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Molecular cancer. 2018;17(1):1-16. [DOI:10.1186/s12943-018-0820-2] [PMID] [PMCID]
17. Yaghoobi H, Azizi H, Banitalebi-Dehkordi M, Rezaei FM, Arsang-Jnag S, Taheri M, et al. Beta-secretase 1 (BACE1) is down-regulated in invasive ductal carcinoma of breast. Rep Biochem Mol Biol. 2019;8(2):200-207.
18. Fattahi S, Nikbakhsh N, Taheri H, Ranaee M, Akhavan-Niaki H. RNA Sequencing of Early-Stage Gastric Adenocarcinoma Reveals Multiple Activated Pathways and Novel Long Non-Coding RNAs in Patient Tissue Samples. Rep Biochem Mol Biol. 2021;9(4):478-489. [DOI:10.52547/rbmb.9.4.478] [PMID] [PMCID]
19. Khorkova O, Myers AJ, Hsiao J, Wahlestedt C. Natural antisense transcripts. Human molecular genetics. 2014;23(R1):R54-R63. [DOI:10.1093/hmg/ddu207] [PMID] [PMCID]
20. Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA, et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome biology. 2010;11(5):1-13. [DOI:10.1186/gb-2010-11-5-r56] [PMID] [PMCID]
21. Zhang X, Zhou Y, Chen S, Li W, Chen W, Gu W. LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis. 2019;8(12):1-13. [DOI:10.1038/s41389-019-0182-7] [PMID] [PMCID]
22. Mosig RA, Castaneda AN, Deslauriers JC, Frazier LP, He KL, Maghzian N, et al. Natural antisense transcript of Period2, Per2AS, regulates the amplitude of the mouse circadian clock. Genes & Development. 2021;35(11-12):899-913. [DOI:10.1101/gad.343541.120] [PMID] [PMCID]
23. Fekry B, Ribas-Latre A, Baumgartner C, Deans JR, Kwok C, Patel P, et al. Incompatibility of the circadian protein BMAL1 and HNF4α in hepatocellular carcinoma. Nature communications. 2018;9(1):1-17. [DOI:10.1038/s41467-018-06648-6] [PMID] [PMCID]
24. Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology. 2021;22(2):96-118. https://doi.org/10.1038/s41580-020-00315-9 [DOI:10.1038/s41580-021-00330-4] [PMID] [PMCID]
25. Zhao S, Zhang X, Chen S, Zhang S. Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark. Journal of Experimental & Clinical Cancer Research. 2020;39(1):1-18. https://doi.org/10.1186/s13046-020-01700-0 [DOI:10.1186/1756-9966-29-1] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb