Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 238-245 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aldhalmi A K, Al-Athari A J H, Makki Al-Hindy H A. Association of Tumor Necrosis Factor-α and Myeloperoxidase enzyme with Severe Asthma: A comparative study. rbmb.net. 2022; 11 (2) :238-245
URL: http://rbmb.net/article-1-823-en.html
The University of Mashreq, College of Pharmacy, Baghdad, Iraq.
Abstract:   (795 Views)
Background: Tumor necrosis factor-alpha (TNF-α) may stimulate airway hyperresponsiveness in asthma, which is also affected by neutrophils activity. The latter can be determined indirectly by evaluating myeloperoxidase (MPO) activity. The insufficient studies that investigated the combined association of
serum TNF-α and MPO with asthma was objective of this study.

Methods: A case-control study included 110-asthmatics besides 92-controls. All participants underwent venous sampling for TNF-α and MPO  immunoassays. A percentage of predicted ''forced expiratory volume in one second (FEV1%)'', and the ''peak expiratory flow rate (PEF/L)'' of all participants were verified. The statistical analyses had done using SPSS V-25. The accuracy, specificity, sensitivity, and significance of both biomarkers to distinguish asthma examined ''under the ROC-curves''.

Results: High TNF-α levels observed among the controls(p-0.006), opposing the higher MPO levels among the patients(p-0.00). There were nonsignificant variations of two biomarkers between the treatment groups and nonsignificant correlations of MPO with FEV1 and PEF. There was a significant correlation of MPO with the TNF-α levels of all participants. The TNF-α showed lower sensitivity, specificity, and accuracy to diagnose asthma. There were no MPO differences according to asthma levels. The TNF-α was higher among the severe asthmatics significantly.

Conclusions: TNF-α may be a contributory particle for neutrophilic inflammation of severe asthma. MPO levels were significantly higher among asthmatics, whereas TNF-α levels were lower. TNF-α levels were higher among those with severe compared to mild/moderate asthma. The MPO level has a significant
predictive capacity compared to TNF-α for distinguishing asthma from healthy subjects.
Full-Text [PDF 332 kb]   (267 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/11/20 | Accepted: 2021/11/22 | Published: 2022/08/7

References
1. Abbas AH, Khadim HW, Jasim AH, Al-Hindy HA, Hammoud SS. Early detection and diagnosis of chronic obstructive pulmonary disease in asymptomatic male smokers and ex-smokers using spirometry. Rev Latinoam Hipertension. 2021;15(1):44-50.
2. Abbas A,Al-Hindy H, Chabuk Sh, Mousa M. Conicity index as an Anthropometric Index of Central Obesity in the Prediction of Adult Bronchial Asthma; Correlation with Fractional Exhaled Nitrous Oxide Tests. Medico-legal Update. 2021;2(2):7.
3. Makki H, Hemid AJ, Jaafar M. The Utility of Serum IL-1β and CRP Together with Fractional Exhaled Nitric Oxide in the Diagnosis of Asthma in Adults. NeuroQuantology. 2021;19(8):119-124. [DOI:10.14704/nq.2021.19.8.NQ21122]
4. Amjed H. Abbas MAR, Hayder Abdul-Amir Al-Hindy, Mazin J. Mousa and Hadeel Abd Ameir Al-Shalah. The Role of Serum IL-1β in Combination with Fractional Exhaled Nitric Oxide in the Diagnosis of Adult Bronchial Asthma. NeuroQuantology. 2021;19(9):13-9. [DOI:10.14704/nq.2021.19.8.NQ21107]
5. Amrani Y, Chen H, Panettieri RA. Activation of tumor necrosis factor receptor 1 in airway smooth muscle: a potential pathway that modulates bronchial hyper-responsiveness in asthma?. Respir Res. 2000;1(1):49-53. [DOI:10.1186/rr12] [PMID] [PMCID]
6. Carr TF, Zeki AA, Kraft M. Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med. 2018;197(1):22-37. [DOI:10.1164/rccm.201611-2232PP] [PMID] [PMCID]
7. Souza DG, Soares AC, Pinho V, Torloni H, Reis LF, Teixeira MM, et al. Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol. 2002;160(5):1755-65. [DOI:10.1016/S0002-9440(10)61122-4]
8. Obaid Abdullah S, Ramadan GM, Makki Al-Hindy H, Jaafar Mousa M, Al-Mumin A, S Jihad. Serum Myeloperoxidase as A Biomarker of Asthma Severity Among Adults: A Case Control Study. Reports of Biochemistry and Molecular Biology. 2022;11(1):182-189. [DOI:10.52547/rbmb.11.1.182] [PMID] [PMCID]
9. Ai-Xia H, Lu L-W, Liu W-J, Huang M. Plasma Inflammatory Cytokine IL-4, IL-8, IL-10, and TNF-α Levels Correlate with Pulmonary Function in Patients with Asthma-Chronic Obstructive Pulmonary Disease (COPD) Overlap Syndrome. Med Sci Monit. 2016;22:2800-8. [DOI:10.12659/MSM.896458] [PMID] [PMCID]
10. Ghaidaa AK. G, and Basima Q. AL-Saadi. The Relationship of Serum Levels of Tumor Necrosis Factor α (TNF α) Cytokine with Asthma. Journal of Pharmaceutical Science and Research. 2019;11(1):206-7.
11. Khan AA, Alsahli MA, Rahmani A H. Myeloperoxidase as an Active Disease Biomarker: Its Recent Biochemical and Pathological Perspectives. Med Sci (Basel). 2018;6(2):33. https://doi.org/10.3390/medsci6020033 [DOI:10.20944/preprints201802.0104.v1] [PMID] [PMCID]
12. Global Initiative for Asthma. Global strategy for asthma management and prevention, 2018. Available from: www.ginasthma.org.
13. Nadeem A, Masood A, Siddiqui N. Oxidant-antioxidant imbalance in asthma: scientific evidence, epidemiological data and possible therapeutic options. Ther Adv Respir Dis. 2008;2(4):215-35. [DOI:10.1177/1753465808094971] [PMID]
14. Tauber E, Herouy Y, Goetz M, Urbanek R, Hagel E, Koller DY. Assessment of serum myeloperoxidase in children with bronchial asthma. Allergy. 1999;54(2):177-82. [DOI:10.1034/j.1398-9995.1999.00797.x] [PMID]
15. Venge P. Soluble markers of allergic inflammation. Allergy. 1994;49(1):1-8. [DOI:10.1111/j.1398-9995.1994.tb00765.x] [PMID]
16. Kim CB, Shim DH, Kim MJ, Cha H-R, Hwang SJ, Park JH, et al. Increased levels of human myeloperxidase (MPO) and neutrophil lipocalin (HNL/NGAL) in childhood asthma. European Respiratory Journal. 2019;54(suppl 63):530. [DOI:10.1183/13993003.congress-2019.PA530]
17. Shayma'a J, Sadeq MH. Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) effecting on asthma patients in Basra Province, Iraq. Biomedicalresearch. 2018;29(17). [DOI:10.4066/biomedicalresearch.29-18-1024]
18. Berry M, Brightling C, Pavord I, Wardlaw A. TNF-alpha in asthma. Curr Opin Pharmacol. 2007;7(3):279-82. [DOI:10.1016/j.coph.2007.03.001] [PMID]
19. Kikuchi Sh, Hagiwara K,Kanazawa M,Nagata M. Association of Tumor Necrosis Factor-alpha and Neutrophilic Inflammation in Severe Asthma. Allergology International. 2005;54(4):621-625. [DOI:10.2332/allergolint.54.621]
20. Kubysheva N, Boldina M, Eliseeva T, Soodaeva S, Klimanov I, Khaletskaya A, et al. Relationship of Serum Levels of IL-17, IL-18, TNF-α, and Lung Function Parameters in Patients with COPD, Asthma-COPD Overlap, and Bronchial Asthma. Mediators of Inflammation. 2020;2020:4652898. [DOI:10.1155/2020/4652898] [PMID] [PMCID]
21. Nguyen TH, Maltby S, Simpson JL, Eyers F, Baines KJ, Gibson PG, et al. TNF-α and Macrophages Are Critical for Respiratory Syncytial Virus-Induced Exacerbations in a Mouse Model of Allergic Airways Disease. J Immunol. 2016;196(9):3547-58. [DOI:10.4049/jimmunol.1502339] [PMID]
22. Taillé C, Poulet C, Marchand-Adam S, Borie R, Dombret MC, Crestani B, et al. Monoclonal Anti-TNF-α Antibodies for Severe Steroid-Dependent Asthma: A Case Series. The open respiratory medicine journal. 2013;7:21-5. [DOI:10.2174/1874306401307010021] [PMID] [PMCID]
23. Erin EM, Leaker BR, Nicholson GC, Tan AJ, Green LM, Neighbour H, et al. The effects of a monoclonal antibody directed against tumor necrosis factor-alpha in asthma. Am J Respir Crit Care Med. 2006;174(7):753-62. [DOI:10.1164/rccm.200601-072OC] [PMID]
24. Bilolikar H, Nam AR, Rosenthal M, Davies JC, Henderson DC, Balfour-Lynn IM. Tumour necrosis factor gene polymorphisms and childhood wheezing. 2005;26(4):637-46. [DOI:10.1183/09031936.05.00071104] [PMID]
25. Mauad T, Bel EH, Sterk PJ. Asthma therapy and airway remodeling. J Allergy Clin Immunol. 2007;120(5):997-1009. [DOI:10.1016/j.jaci.2007.06.031] [PMID]
26. Niazi S, Batra V, Awsare B, Zangrilli JG, Peters SP. Allergic inflammation: initiation, progression, and resolution. In: Adkinson Jr, NF, et al., eds. Middleton's Allergy Principles & Practice, 6th ed., vol 1. Philadelphia: Mosby, 2003:453-463.
27. Townley RG, Horiba M. Airway hyperresponsiveness: a story of mice and men and cytokines. Clin Rev Allergy Immunol. 2003;24(1):85-110. [DOI:10.1385/CRIAI:24:1:85]
28. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004;202:175-90. [DOI:10.1111/j.0105-2896.2004.00215.x] [PMID]
29. Kikuchi S, Kikuchi I, Hagiwara K, Kanazawa M, Nagata M. Association of Tumor Necrosis Factor-α and Neutrophilic Inflammation in Severe Asthma. Allergology International. 2005;54(4):621-625. [DOI:10.2332/allergolint.54.621]
30. Mazin J,Saffar H Al, Maki H. The Value of Using Tagman Real-time PCR, Phenol-Auramine Stain and Ziehl-Neelsen Stain in The Diagnosis of Pulmonary Tuberculosis in Fine-Needle Aspiration Material. International Journal of Pharmaceutical Quality Assurance. 2019;10(2):330-3. [DOI:10.25258/ijpqa.10.2.20]
31. Saad Bash H, H Abdul-A.M,Basheer Al-Mamory H, Mazin JM. The study of Serum ferritin level as a predictor of growth retardation in thalassemia-major. Archivos Venezolanos de Farmacologia y Terapeutica. 2021;40(5):492-497.
32. Jaafer M, Maki H, Basim A, Fouad Sh, DleikhF Sh, Jasim A. Possible cause-and-effect linkage of transforming growth factor-beta1 and platelets derived growth factor-AB with delayed anthropometric parameters in adolescent patients with Cooley's anemia: Cases vis control research strategy. EurAsian Journal of BioSciences. 2020;14:7.
33. Athari SS. Targeting cell signaling in allergic asthma. Signal Transduction and Targeted Therapy. 2019;4(1):45. [DOI:10.1038/s41392-019-0079-0] [PMID] [PMCID]
34. Al-Hindy H, Maki H. No Significant Relationship of Ferritin Levels to the Levels of Platelet-derived Growth Factor (PDGF) in the Peripheral Blood of Transfusion-dependent ß-Thalassemia Major Patients with Growth Retardation. Measuring some growth factors in thalassemia major. 2020;12(3):8. [DOI:10.31838/ijpr/2020.12.03.084]
35. Kardas G, Daszyńska-Kardas A, Marynowski M, Brząkalska O, Kuna P, Panek M. Role of Platelet-Derived Growth Factor (PDGF) in Asthma as an Immunoregulatory Factor Mediating Airway Remodeling and Possible Pharmacological Target. Front Pharmacol. 2020;11:47. [DOI:10.3389/fphar.2020.00047] [PMID] [PMCID]
36. Bridge J, Blakey JD, Bonnett LJ. A systematic review of methodology used in the development of prediction models for future asthma exacerbation. BMC Medical Research Methodology. 2020;20(1):22. [DOI:10.1186/s12874-020-0913-7] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb