Volume 10, Issue 4 (Vol.10 No.4 Jan 2022)                   rbmb.net 2022, 10(4): 686-696 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fujiati F, Haryati H. Anti-Inflammatory and Anti-Remodelling Potential of Ethanol Extract Rhodomyrtus Tomentosa in Combination of Asthma and Coal Dust Models. rbmb.net. 2022; 10 (4) :686-696
URL: http://rbmb.net/article-1-824-en.html
Department Pulmonology and Respiratory Medicine, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
Abstract:   (834 Views)
Background: Combination of asthma and coal dust is a chronic and recurring airway disease related to inflammation cell activation. The Rhodomyrtus tomentosa flowering plants native to South Kalimantan exhibit a broad therapeutic potential, like anti-inflammatory and anti-remodelling properties. This study aims to analyze the effect of ethanol extract of R. tomentosa leaves (EERTL) nebulizer on the number of inflammatory cells and histomorphometry of lung tissue in a mice-like model of a combination of asthma and coal dust.

Methods: The 24 BALB/c mice were divided into four treatment groups (n= 6 per group), were sensitized with normal saline (K), OVA + coal dust (P1), OVA + coal dust + salbutamol (P2), and OVA + coal dust + EERTL (P3). Eosinophil cells, neutrophils, lymphocytes, epithelial thickness, smooth muscle, fibrosis subepithelial bronchioles, and the number of goblet cells as indicators of anti-inflammatory and antiremodelling airways.

Results: The number of eosinophils, neutrophils, and lymphocytes cells are given salbutamol or EERTL was significantly lower than the OVA-sensitized and coal dust exposure group only. There are meaningful differences in the average thickness of the epithelium, smooth muscle, and subepithelial fibrosis of bronchiolus. The histopathology picture of goblet cells showed an increase in the number and size (hyperplasia) in OVA-sensitized and coal dust exposure compared to another group.

Conclusions: It was concluded that the EERTL nebulizer could reduce inflammatory cells and remodelling process from bronchoalveolar lavage in the mice combination of asthma and coal dust models.
Full-Text [PDF 1769 kb]   (364 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/11/22 | Accepted: 2021/11/22 | Published: 2022/02/7

1. Kania N, Setiawan B, Nurdiana, Widodo MA, Kusuma HMSC. Lung histopathology changed in coal dust exposure with model 2010 equipment. MKB; 2011; 43:127-33. [DOI:10.15395/mkb.v43n3.58]
2. Kisno Saputri R, Setiawan B, Nugrahenny D, Kania N, Sri Wahyuni E, Widodo MA. The effects of Eucheuma cottonii on alveolar macrophages and malondialdehyde levels in bronchoalveolar lavage fluid in chronically particulate matter 10 coal dust-exposed rats. Iran J Basic Med Sci. 2014;17(7):541-545.
3. Fujiati DA, Mintaroem K, Barlianto W, Widodo MA. Effects of coal dust particulate matter exposure on H2O2, MDA, IL-13, TGF-β3 level and bronchioles sub-epithelial fibrosis in allergic asthma mice model. J Glob Pharma Technol. 2019;11(04, Suppl.):130-9.
4. Ishtiaq M, Jehan N, Khan SA, Muhammad S, Saddique U, Iftikhar B, et al. Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. Environ Sci Pollut Res Int. 2018;25(15):14666-14673. [DOI:10.1007/s11356-018-1655-5] [PMID]
5. Health Research and Development Agency, Ministry of Health, Republic of Indonesia. Basic Health Research. 2018. http://www.litbang.depkes.co.id
6. Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, et al. Airway Remodeling in Asthma. Front Med. 2020;7:191. [DOI:10.3389/fmed.2020.00191] [PMID] [PMCID]
7. Global Initiative for Asthma. Diagnosis of Diseases of Chronic Airflow Limitation: Asthma COPD and Asthma-COPD Overlap Syndrome (ACOS) Based on the Global Strategy for Asthma Management and Prevention and the Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease, 2014;1-12. http://www.ginasthma.org/local/uploads/files/AsthmaCOPDOverlap.pdf.
8. Henderson I, Caiazzo E, McSharry C, Guzik TJ, Maffia P. Why do some asthma patients respond poorly to glucocorticoid therapy? Pharmacol Res. 2020;160:105189. [DOI:10.1016/j.phrs.2020.105189] [PMID] [PMCID]
9. Jeong D, Yang WS, Yang Y, Nam G, Kim JH, Yoon DH, et al. In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract. J Ethnopharmacol. 2013;146(1):205-13. [DOI:10.1016/j.jep.2012.12.034] [PMID]
10. Sutomo, Arnida, Rizki M, Triyasmono L, Nugroho A, Mintowati E, et al. Skrining fitokimia dan uji kualitatif aktivitas antioksidan tumbuhan asal Daerah Rantau Kabupaten Tapin Kalimantan Selatan. J Pharmascience. 2016;3(1):66-74.
11. Ma Q, Jiang JG, Yuan X, Qiu K, Zhu W. Comparative antitumor and anti-inflammatory effects of flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids from Cirsium japonicum DC. Food Chem Toxicol. 2019;125:422-429. [DOI:10.1016/j.fct.2019.01.020] [PMID]
12. Bai M, Yao GD, Ren Q, Li Q, Liu QB, Zhang Y, et al. Triterpenoid saponins and flavonoids from licorice residues with anti-inflammatory activity. Industrial Crops and Products. 2018;125:50-58. [DOI:10.1016/j.indcrop.2018.08.075]
13. Tian C, Chang Y, Liu X, Zhang Z, Guo Y, Lan Z, et al. Anti-inflammatory activity in vitro, extractive process and HPLC-MS characterization of total saponins extract from Tribulus terrestris L. fruits. Industrial Crops and Products. 2020;150:112343. [DOI:10.1016/j.indcrop.2020.112343]
14. Yan Y, Liu X, Gao J, Wu Y, Li Y. Inhibition of TGF-β Signaling in Gliomas by the Flavonoid Diosmetin Isolated from Dracocephalum peregrinum L. Molecules. 2020;25(1):192. [DOI:10.3390/molecules25010192] [PMID] [PMCID]
15. Wang Z, Li L, Wang C, Piao Y, Jiang J, Li L, et al. Recombinant Pyrin Domain Protein Attenuates Airway Inflammation and Alleviates Epithelial-Mesenchymal Transition by Inhibiting Crosstalk Between TGFβ1 and Notch1 Signaling in Chronic Asthmatic Mice. Front Physiol. 2020;11:559470. [DOI:10.3389/fphys.2020.559470] [PMID] [PMCID]
16. Peebles RS, Aronica MA. Proinflammatory Pathways in the Pathogenesis of Asthma. Clin Chest Med. 2019;40(1):29-50. [DOI:10.1016/j.ccm.2018.10.014] [PMID] [PMCID]
17. Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res. 2017;6:1014.
18. Esmaeilzadeh A, Elahi R. Immunobiology and immunotherapy of COVID-19: A clinically updated overview. J Cell Physiol. 2021;236(4):2519-2543. [DOI:10.1002/jcp.30076] [PMID] [PMCID]
19. Gasparotto J, Chaves PR, da Boit Martinello K, da Rosa-Siva HT, Bortolin RC, Silva LFO, et al. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol Environ Saf. 2018;165:44-51. [DOI:10.1016/j.ecoenv.2018.08.097] [PMID]
20. Saba E, Lee Y sil, Yang WK, Lee YY, Kim MK, Woo SM, et al. Effects of a herbal formulation, KGC3P, and its individual component, nepetin, on coal fly dust-induced airway inflammation. Sci Reports. 2020;10(1):1-13. [DOI:10.1038/s41598-020-68965-5] [PMID] [PMCID]
21. León-Mejía G, Machado MN, Okuro RT, Silva LFO, Telles C, Dias J, et al. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci Total Environ. 2018;625:589-599. [DOI:10.1016/j.scitotenv.2017.12.283] [PMID]
22. Khan ZA, Aslam MI, Ahmad MH, Ahmad MT, Ishaq H, Ahmed Z. Upper Respiratory Allergic Symptoms And Effects Of Coal Dust On Pulmonary Function Tests Of Individuals Working In Coal Mines, Near Quetta, Baluchistan, Pakistan. Adv Basic Med Sci. 2021;5(1):7-10.
23. Ogino K, Nagaoka K, Ito T, Takemoto K, Okuda T, Nakayama SF, et al. Involvement of PM2.5-bound protein and metals in PM2.5-induced allergic airway inflammation in mice. Inhal Toxicol. 2018;30(13-14):498-508. [DOI:10.1080/08958378.2018.1561769] [PMID]
24. Huang C, Li J, Zhang Q, Huang X. Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts. Am J Respir Cell Mol Biol. 2002;27(5):568-74. [DOI:10.1165/rcmb.4821] [PMID] [PMCID]
25. Na-Phatthalung P, Teles M, Voravuthikunchai SP, Tort L, Fierro-Castro C. Immunomodulatory effects of Rhodomyrtus tomentosa leaf extract and its derivative compound, rhodomyrtone, on head kidney macrophages of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem. 2018;44(2):543-555. [DOI:10.1007/s10695-017-0452-2] [PMID]
26. Herath KHINM, Mihindukulasooriya SP, Kim HJ, Kim A, Kim HJ, Jeon YJ, et al. Oral administration of polyphenol-rich Sargassum horneri suppresses particulate matter exacerbated airway inflammation in murine allergic asthma: Relevance to the TLR mediated NF-κB pathway inhibition. J Funct Foods. 2020;71:103991. [DOI:10.1016/j.jff.2020.103991]
27. Vo TS, Ngo DH. The health beneficial properties of rhodomyrtus tomentosa as potential functional food. Biomolecules. 2019;9(2):76. [DOI:10.3390/biom9020076] [PMID] [PMCID]
28. Zhao Z, Wu L, Xie J, Feng Y, Tian J, He X, et al. Rhodomyrtus tomentosa (Aiton.): A review of phytochemistry, pharmacology and industrial applications research progress. Food Chem. 2020;309:125715. [DOI:10.1016/j.foodchem.2019.125715] [PMID]
29. Balkrishna A, Solleti SK, Singh H, Tomer M, Sharma N, Varshney A. Calcio-herbal formulation, Divya-Swasari-Ras, alleviates chronic inflammation and suppresses airway remodelling in mouse model of allergic asthma by modulating pro-inflammatory cytokine response. Biomed Pharmacother. 2020;126:110063. [DOI:10.1016/j.biopha.2020.110063] [PMID]
30. Hwang JY, Randall TD, Silva-Sanchez A. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung. Front Immunol. 2016;7:258. [DOI:10.3389/fimmu.2016.00258] [PMID] [PMCID]
31. Xue K, Ruan L, Hu J, Fu Z, Tian D, Zou W. Panax notoginseng saponin R1 modulates TNF-α/NF-κB signaling and attenuates allergic airway inflammation in asthma. Int Immunopharmacol. 2020;88:106860. [DOI:10.1016/j.intimp.2020.106860] [PMID]
32. Tang X, Nian H, Li X, Yang Y, Wang X, Xu L, et al. Effects of the combined extracts of Herba Epimedii and Fructus Ligustrilucidi on airway remodeling in the asthmatic rats with the treatment of budesonide. BMC Complement Altern Med. 2017;17(1):380. [DOI:10.1186/s12906-017-1891-0] [PMID] [PMCID]
33. Zhang J, Dong L. Status and prospects: personalized treatment and biomarker for airway remodeling in asthma. J Thorac Dis. 2020;12(10):6090-6101. [DOI:10.21037/jtd-20-1024] [PMID] [PMCID]
34. Sutomo A, Hernawati F, Yuwono M. A pharmacognostic study of karamunting leaves (Rhodomyrtus tomentosa) from Pelaihari, South Kalimantan. Sci Appl Chem. 2010;4(1):38-50.
35. Wang Y, Jing W, Qu W, Liu Z, Zhang D, Qi X, et al. Tectorigenin inhibits inflammation and pulmonary fibrosis in allergic asthma model of ovalbumin-sensitized guinea pigs. J Pharm Pharmacol. 2020;72(7):956-968. [DOI:10.1111/jphp.13271] [PMID]
36. Shimodaira T, Matsuda K, Uchibori T, Sugano M, Uehara T, Honda T. Upregulation of osteopontin expression via the interaction of macrophages and fibroblasts under IL-1b stimulation. Cytokine. 2018;110:63-69. [DOI:10.1016/j.cyto.2018.04.025] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb