Volume 11, Issue 1 (Vol.11 No.1 Apr 2022)                   rbmb.net 2022, 11(1): 125-137 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Cheah C H, Ling A P K, Wong Y P, Koh R Y, Hussein S. Anti-neuroinflammatory of Chloroform Extract of Panax ginseng Root Culture on Lipopolysaccharide-stimulated BV2 Microglia Cells. rbmb.net. 2022; 11 (1) :125-137
URL: http://rbmb.net/article-1-826-en.html
Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
Abstract:   (1404 Views)
Background: It is believed that activation of microglia in the central nervous system upon detection of stimulus like lipopolysaccharides provokes neuroinflammation via the production of pro-inflammatory mediators and cytokines. The cytoprotective and anti-inflammatory properties of various folk medicine has been gaining attention as a strategy to combat various disease. This study aimed to assess the antineuroinflammatory properties of chloroform extract of in vitro Panax ginseng root culture based on nitric oxide and cytokines production.

Methods: The study was initiated with the determination of maximum non-toxic dose (MNTD) of P.ginseng root culture chloroform extract using the MTT assay. The lipopolysaccharides-stimulated BV2 microglia cells were treated with MNTD and ½MNTD of the extract and its anti-neuroinflammatory
properties were assessed by measuring the production of nitric oxide (NO) via Griess assay, as well as TNF-α, IL-6 and IL-10 using Quantikine ELISA.

Results: It was found that the MNTD and ½MNTD of the extract did not play a significant role in the production of pro-inflammatory cytokines such as NO, TNF-α and IL-6. However, the MNTD and ½MNTD of chloroform extract significantly increased the anti-inflammatory IL-10 compared to the untreated cells.

Conclusions: With this, the chloroform extract of P. ginseng root culture potentially exerts antineuroinflammatory properties.
Full-Text [PDF 364 kb]   (418 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/11/24 | Accepted: 2021/11/28 | Published: 2022/05/26

1. Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep. 2016;13(4):3391-6. [DOI:10.3892/mmr.2016.4948] [PMID] [PMCID]
2. Kovacs GG. Current concepts of neurodegenerative diseases. Cit EMJ Neurol. 2014;1:78-86.
3. Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodegener. 2017;6:20. [DOI:10.1186/s40035-017-0088-2] [PMID] [PMCID]
4. Zhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virol J. 2013;10(1):172. [DOI:10.1186/1743-422X-10-172] [PMID] [PMCID]
5. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest. 2005;115(6):1449-1457. [DOI:10.1172/JCI24761] [PMID] [PMCID]
6. Scholz M, Cinatl J, Schädel-Höpfner M, Windolf J. Neutrophils and the blood-brain barrier dysfunction after trauma. Med Res Rev. 2007;27(3):401-416. [DOI:10.1002/med.20064] [PMID]
7. Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154-69. [DOI:10.1111/j.1365-2567.2009.03225.x] [PMID] [PMCID]
8. Noh H, Jeon J, Seo H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int. 2014;69:35-40. [DOI:10.1016/j.neuint.2014.02.008] [PMID]
9. Dheen ST, Kaur C, Ling E-A. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007;14(11):1189-97. [DOI:10.2174/092986707780597961] [PMID]
10. Kiaei M. New hopes and challenges for treatment of neurodegenerative disorders: Great opportunities for Young neuroscientists. Basic Clin Neurosci. 2013;4(1):3-4.
11. Rasool M, Malik A, Qureshi MS, Manan A, Pushparaj PN, Asif M, et al. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid Based Complement Alternat Med. 2014;2014:979730. [DOI:10.1155/2014/979730] [PMID] [PMCID]
12. Leung K, Wong A. Pharmacology of ginsenosides: a literature review. Chin Med. 2010;5(1):20. [DOI:10.1186/1749-8546-5-20] [PMID] [PMCID]
13. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, et al. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res. 2016;40(3):203-10. [DOI:10.1016/j.jgr.2015.07.006] [PMID] [PMCID]
14. Kim DH, Chung JH, Yoon JS, Ha YM, Bae S, Lee EK, et al. Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-kB in LPS-stimulated RAW264.7 cells and mouse liver. J Ginseng Res. 2013;37(1):54-63. [DOI:10.5142/jgr.2013.37.54] [PMID] [PMCID]
15. Tu LH, Ma J, Liu HP, Wang RR, Luo J. The neuroprotective effects of ginsenosides on calcineurin activity and tau phosphorylation in SY5Y cells. Cell Mol Neurobiol. 2009;29(8):1257-64. [DOI:10.1007/s10571-009-9421-3] [PMID]
16. Kim SJ, Kim AK. Anti-breast cancer activity of fine black ginseng (Panax ginseng Meyer) and ginsenoside Rg5. J Ginseng Res. 2015;39(2):125-34. [DOI:10.1016/j.jgr.2014.09.003] [PMID] [PMCID]
17. Razi NS, Seydi E, Nazemi M, Arast Y, Pourahmad J. Selective toxicity of persian gulf sea squirt (Phallusia nigra) extract on isolated mitochondria obtained from liver hepatocytes of hepatocellular carcinoma induced rat. Hepatitis Monthly. 2017;17(2):1-7. [DOI:10.5812/hepatmon.41489]
18. Seydi E, Motallebi A, Dastbaz M, Dehghan S, Salimi A, Nazemi M, et al. Selective toxicity of persian gulf sea cucumber (Holothuria parva) and sponge (Haliclona oculata) methanolic extracts on liver mitochondria isolated from an animal model of hepatocellular carcinoma. Hepat Mon. 2015;15(12):e33073. [DOI:10.5812/hepatmon.33073] [PMID] [PMCID]
19. Rat D, Schmitt U, Tippmann F, Dewachter I, Theunis C, Wieczerzak E, et al. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 2011;25(9):3208-18. [DOI:10.1096/fj.10-180133] [PMID] [PMCID]
20. Lee HL, Kang KS. Protective effect of ginsenoside Rh3 against anticancer drug-induced apoptosis in LLC-PK1 kidney cells. J Ginseng Res. 2017;41(2):227-231. [DOI:10.1016/j.jgr.2017.01.011] [PMID] [PMCID]
21. Zhang F, Li M, Wu X, Hu Y, Cao Y, Wang X, et al. 20(S)-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway. Drug Des Devel Ther. 2015;9:3969-87. [DOI:10.2147/DDDT.S84527] [PMID] [PMCID]
22. Shin D-H, Leem D-G, Shin J-S, Kim J-I, Kim K-T, Choi SY, et al. Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells. J Ginseng Res. 2018;42(2):165-174. [DOI:10.1016/j.jgr.2017.01.015] [PMID] [PMCID]
23. Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J. 2012;33(7):829-837. [DOI:10.1093/eurheartj/ehr304] [PMID] [PMCID]
24. Yan L, Liu S, Wang C, Wang F, Song Y, Yan N, et al. JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediators Inflamm. 2013;2013:895975. [DOI:10.1155/2013/895975] [PMID] [PMCID]
25. Yamada T, Fujino T, Yuhki K, Hara A, Karibe H, Takahata O, et al. Thromboxane A2 regulates vascular tone via its inhibitory effect on the expression of inducible nitric oxide synthase. Circulation. 2003;108:2381-6. [DOI:10.1161/01.CIR.0000093194.21109.EC] [PMID]
26. Yoon JB, Kim SJ, Hwang SG, Chang S, Kang SS, Chun JS. Non-steroidal anti-inflammatory drugs inhibit nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes independent of cyclooxygenase activity. J Biol Chem. 2003;278(17):15319-25. [DOI:10.1074/jbc.M212520200] [PMID]
27. Choi JH, Lee MJ, Jang M, Kim HJ, Lee S, Lee SW, et al. Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala. J Ginseng Res. 2018;42(1):107-115. [DOI:10.1016/j.jgr.2017.04.012] [PMID] [PMCID]
28. Baune BT, Wiede F, Braun A, Golledge J, Arolt V, Koerner H. Cognitive dysfunction in mice deficient for TNF- and its receptors. Am J Med Genet Part B Neuropsychiatr Genet. 2008;147B(7):1056-64. [DOI:10.1002/ajmg.b.30712] [PMID]
29. Kaneko M, Stellwagen D, Malenka RC, Stryker MP. Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron. 2008;58(5):673-80. [DOI:10.1016/j.neuron.2008.04.023] [PMID] [PMCID]
30. Lee DCW, Lau ASY. Effects of Panax ginseng on tumor necrosis factor-α-mediated inflammation: A mini-review. Molecules. 2011;16(4):2802-2816. [DOI:10.3390/molecules16042802] [PMID] [PMCID]
31. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, et al. Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int Immunopharmacol. 2007;7(3):313-20. [DOI:10.1016/j.intimp.2006.04.021] [PMID]
32. Kim HA, Kim S, Chang SH, Hwang HJ, Choi Y nim. Anti-arthritic effect of ginsenoside Rb1 on collagen induced arthritis in mice. Int Immunopharmacol. 2007;7(10):1286-91. [DOI:10.1016/j.intimp.2007.05.006] [PMID]
33. Liu X-L, Xi Q-Y, Yang L, Li H-Y, Jiang Q-Y, Shu G, et al. The effect of dietary Panax ginseng polysaccharide extract on the immune responses in white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2011;30(2):495-500. [DOI:10.1016/j.fsi.2010.11.018] [PMID]
34. Kim MH, Byon YY, Ko EJ, Song JY, Yun YS, Shin T, et al. Immunomodulatory activity of ginsan, a polysaccharide of Panax ginseng, on dendritic cells. Korean J Physiol Pharmacol. 2009;13(3):169-73. [DOI:10.4196/kjpp.2009.13.3.169] [PMID] [PMCID]
35. Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta. 2016;(6 Pt A):1218-27. [DOI:10.1016/j.bbamcr.2016.03.018] [PMID]
36. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8:1254-66. [DOI:10.7150/ijbs.4679] [PMID] [PMCID]
37. Lee YY, Park JS, Lee EJ, Lee SY, Kim DH, Kang JL, et al. Anti-inflammatory mechanism of ginseng saponin metabolite Rh3 in lipopolysaccharide-stimulated microglia: critical role of 5'-Adenosine monophosphate-activated protein kinase signaling pathway. J Agric Food Chem. 2015;63(13):3472-80. [DOI:10.1021/jf506110y] [PMID]
38. Lee YJ, Son YM, Gu MJ, Song KD, Park SM, Song HJ, et al. Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells. J Ginseng Res. 2015;39(1):29-37. [DOI:10.1016/j.jgr.2014.07.003] [PMID] [PMCID]
39. Tseng W-P, Su C-M, Tang C-H. FAK activation is required for TNF-alpha-induced IL-6 production in myoblasts. J Cell Physiol. 2010;223(2):389-96. [DOI:10.1002/jcp.22047] [PMID]
40. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016;353(6301):aad8670. [DOI:10.1126/science.aad8670] [PMID]
41. Zheng H, Jeong Y, Song J, Ji GE. Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitis-like skin lesions induced by oxazolone in hairless mice. Int Immunopharmacol. 2011;11(4):511-8. [DOI:10.1016/j.intimp.2010.12.022] [PMID]
42. Ahn JY, Choi IS, Shim JY, Yun EK, Yun YS, Jeong G, et al. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated inflammatory signals. Eur J Immunol. 2006;36(1):37-45. [DOI:10.1002/eji.200535138] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb