Volume 10, Issue 4 (Vol.10 No.4 Jan 2022)                   rbmb.net 2022, 10(4): 602-613 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasrollahzadeh A, Momeny M, Bashash D, Yousefi H, Mousavi S A, Ghaffari S H. Blockade of Nuclear Factor-Κb (NF-Κb) Pathway Using Bay 11-7082 Enhances Arsenic Trioxide-Induced Antiproliferative Activity in U87 Glioblastoma Cells. rbmb.net 2022; 10 (4) :602-613
URL: http://rbmb.net/article-1-836-en.html
Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Abstract:   (1837 Views)
Background: Glioblastoma (GBM), the most aggressive and common form of glioma, accounts for over 13,000 death per year in the United States which indicates the importance of developing novel strategies for the treatment of this fatal malignancy. Although Arsenic trioxide (ATO) hinders the growth and survival of GBM cells, the requirement of concentrations higher than 4 μM for triggering apoptotic cell death has questioned its safety profile. Since the NF-κB signaling pathway plays a crucial role in tumorigenesis and chemo-resistance, targeting this oncogenic pathway may sensitize GBM cells to lower concentrations of ATO.

Methods: Anti-tumor effects of ATO as monotherapy and in combination with Bay 11-7082 were determined using MTT, crystal violet staining, Annexin V/PI staining and scratch assays. Quantitative reverse transcription-PCR (qRT-PCR) analysis was applied to elucidate the molecular mechanisms
underlying the anti-tumor activity of this combination therapy.

Results: Our results revealed that ATO and Bay 11-7082 synergistically inhibited the proliferation and survival of GBM cells. Also, it was revealed that NF-κB inhibition using Bay 11-7082 enhanced the inhibitory effects of ATO on migration of GBM cells via suppressing the expression of NF-κB target genes such as TWIST, MMP2, ICAM-1, and cathepsin B. Furthermore, combination treatment of GBM cells with ATO and Bay 11-7082 significantly induce apoptotic cell death coupled with downregulation of NF-κB anti-apoptotic target genes including Bcl-2 and IAP family members.

Conclusions: Altogether, these findings suggest that combination therapy with ATO and Bay 11-7082 may be a promising strategy for the treatment of GBM.
Full-Text [PDF 497 kb]   (722 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2021/12/6 | Accepted: 2021/12/29 | Published: 2022/02/7

1. Taylor OG, Brzozowski JS, Skelding KA. Glioblastoma multiforme: an overview of emerging therapeutic targets. Front Oncol. 2019;9:963. [DOI:10.3389/fonc.2019.00963] [PMID] [PMCID]
2. Chen B, Chen C, Zhang Y, Xu J. Recent incidence trend of elderly patients with glioblastoma in the United States, 2000-2017. BMC cancer. 2021;21(1):1-10. [DOI:10.1186/s12885-021-09033-7] [PMID] [PMCID]
3. Lukas RV, Wainwright DA, Ladomersky E, Sachdev S, Sonabend AM, Stupp R. Newly diagnosed glioblastoma: a review on clinical management. Oncology (Williston Park). 2019;33(3):91-100.
4. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 2020;70(4):299-312. [DOI:10.3322/caac.21613] [PMID]
5. Iwamoto FM, Fine HA. Bevacizumab for malignant gliomas. Arch Neurol. 2010;67(3):285-288. [DOI:10.1001/archneurol.2010.11] [PMID] [PMCID]
6. Tamimi AF, Juweid M, Vleeschouwer SD. Epidemiology and outcome of glioblastoma. Exon Publications. 2017:143-53. [DOI:10.15586/codon.glioblastoma.2017.ch8] [PMID]
7. Sanz MA, Fenaux P, Tallman MS, Estey EH, Löwenberg B, Naoe T, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133(15):1630-1643. [DOI:10.1182/blood-2019-01-894980] [PMID] [PMCID]
8. Leung LL, Lam SK, Li YY, Ho JCM. Tumour growth‑suppressive effect of arsenic trioxide in squamous cell lung carcinoma. Oncol Lett. 2017;14(3):3748-3754. [DOI:10.3892/ol.2017.6646] [PMID] [PMCID]
9. Zhang T, Wang S, Hong L, Wang X, Qi Q. Arsenic trioxide induces apoptosis of rat hepatocellular carcinoma cells in vivo. J Exp Clin Cancer Res. 2003;22(1):61-8.
10. Fang Y, Zhang Z. Arsenic trioxide as a novel anti-glioma drug: a review. Cell Mol Biol Lett. 2020;25:44. [DOI:10.1186/s11658-020-00236-7] [PMID] [PMCID]
11. Cheng Y, Li Y, Ma C, Song Y, Xu H, Yu H, et al. Arsenic trioxide inhibits glioma cell growth through induction of telomerase displacement and telomere dysfunction. Oncotarget. 2016;7(11):12682-92. [DOI:10.18632/oncotarget.7259] [PMID] [PMCID]
12. Osuka S, Van Meir EG. Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest. 2017;127(2):415-426. [DOI:10.1172/JCI89587] [PMID] [PMCID]
13. Cahill KE, Morshed RA, Yamini B. Nuclear factor-κB in glioblastoma: insights into regulators and targeted therapy. Neuro Oncol. 2015;18(3):329-39. [DOI:10.1093/neuonc/nov265] [PMID] [PMCID]
14. Puliyappadamba VT, Hatanpaa KJ, Chakraborty S, Habib AA. The role of NF-κB in the pathogenesis of glioma. Mol Cell Oncol. 2014;1(3):e963478. [DOI:10.4161/23723548.2014.963478] [PMID] [PMCID]
15. Soubannier V, Stifani S. NF-κB signalling in glioblastoma. Biomedicines. 2017;5(2):29. [DOI:10.3390/biomedicines5020029] [PMID] [PMCID]
16. Avci NG, Ebrahimzadeh-Pustchi S, Akay YM, Esquenazi Y, Tandon N, Zhu J-J, et al. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB (p65) and actin cytoskeleton regulatory pathways. Scientific Reports. 2020;10(1):1-14. [DOI:10.1038/s41598-020-70392-5] [PMID] [PMCID]
17. Zanotto-Filho A, Braganhol E, Schröder R, de Souza LHT, Dalmolin RJ, Pasquali MAB, et al. NFκB inhibitors induce cell death in glioblastomas. Biochem Pharmacol. 2011;81(3):412-24. [DOI:10.1016/j.bcp.2010.10.014] [PMID]
18. Krishnan N, Bencze G, Cohen P, Tonks NK. The anti‐inflammatory compound BAY‐11‐7082 is a potent inhibitor of protein tyrosine phosphatases. FEBS J. 2013;280(12):2830-2841. [DOI:10.1111/febs.12283] [PMID] [PMCID]
19. Momeny M, Yousefi H, Eyvani H, Moghaddaskho F, Salehi A, Esmaeili F, et al. Blockade of nuclear factor-κB (NF-κB) pathway inhibits growth and induces apoptosis in chemoresistant ovarian carcinoma cells. Int J Biochem Cell Biol. 2018;99:1-9. [DOI:10.1016/j.biocel.2018.03.015] [PMID]
20. Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-6. [DOI:10.1158/0008-5472.CAN-09-1947] [PMID]
21. Baakhlagh S, Kashani B, Zandi Z, Bashash D, Moradkhani M, Nasrollahzadeh A, et al. Toll-like receptor 4 signaling pathway is correlated with pathophysiological characteristics of AML patients and its inhibition using TAK-242 suppresses AML cell proliferation. Int Immunopharmacol. 2020;90:107202. [DOI:10.1016/j.intimp.2020.107202] [PMID]
22. Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2(9):823-30. [DOI:10.1158/2326-6066.CIR-14-0112] [PMID] [PMCID]
23. Basseres D, Baldwin A. Nuclear factor-κ B and inhibitor of κ B kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25(51):6817-30. [DOI:10.1038/sj.onc.1209942] [PMID]
24. Nasrollahzadeh A, Bashash D, Kabuli M, Zandi Z, Kashani B, Zaghal A, et al. Arsenic trioxide and BIBR1532 synergistically inhibit breast cancer cell proliferation through attenuation of NF-κB signaling pathway. Life Sci. 2020;257:118060. [DOI:10.1016/j.lfs.2020.118060] [PMID]
25. Mesbahi Y, Zekri A, Ahmadian S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Targeting of EGFR increase anti-cancer effects of arsenic trioxide: Promising treatment for glioblastoma multiform. Eur J Pharmacol. 2018;820:274-285. [DOI:10.1016/j.ejphar.2017.12.041] [PMID]
26. Vollmann-Zwerenz A, Leidgens V, Feliciello G, Klein CA, Hau P. Tumor cell invasion in glioblastoma. Int J Mol Sci. 2020;21(6):1932. [DOI:10.3390/ijms21061932] [PMID] [PMCID]
27. Lee DW, Ramakrishnan D, Valenta J, Parney IF, Bayless KJ, Sitcheran R. The NF-κB RelB protein is an oncogenic driver of mesenchymal glioma. PloS one. 2013;8(2):e57489. [DOI:10.1371/journal.pone.0057489] [PMID] [PMCID]
28. EliasM C, TozerK R. TWIST is Expressed in Human Gliomas and Promotes Invasion. Neoplasia. 2005;7(9):824-837. [DOI:10.1593/neo.04352] [PMID] [PMCID]
29. Yu C-F, Chen F-H, Lu M-H, Hong J-H, Chiang C-S. Dual roles of tumour cells-derived matrix metalloproteinase 2 on brain tumour growth and invasion. Br J Cancer. 2017;117(12):1828-1836. [DOI:10.1038/bjc.2017.362] [PMID] [PMCID]
30. Piao Y, Henry V, Tiao N, Park SY, Martinez-Ledesma J, Dong JW, et al. Targeting intercellular adhesion molecule-1 prolongs survival in mice bearing bevacizumab-resistant glioblastoma. Oncotarget. 2017;8(57):96970-96983. [DOI:10.18632/oncotarget.18859] [PMID] [PMCID]
31. Demchik LL, Sameni M, Nelson K, Mikkelsen T, Sloane BF. Cathepsin B and glioma invasion. Int J Dev Neurosci. 1999;17(5-6):483-94. [DOI:10.1016/S0736-5748(99)00011-8]
32. Valdés-Rives SA, Casique-Aguirre D, Germán-Castelán L, Velasco-Velázquez MA, González-Arenas A. Apoptotic signaling pathways in glioblastoma and therapeutic implications. Biomed Res Int. 2017;2017:7403747. [DOI:10.1155/2017/7403747] [PMID] [PMCID]
33. Steinbach JP, Weller M. Apoptosis in gliomas: molecular mechanisms and therapeutic implications. J Neurooncol. 2004;70(2):245-54. [DOI:10.1007/s11060-004-2753-4]
34. Qiu B, Wang Y, Tao J, Wang Y. Expression and correlation of Bcl-2 with pathological grades in human glioma stem cells. Oncol Rep. 2012;28(1):155-60.
35. Emery IF, Gopalan A, Wood S, Chow K-h, Battelli C, George J, et al. Expression and function of ABCG2 and XIAP in glioblastomas. J Neurooncol. 2017;133(1):47-57. [DOI:10.1007/s11060-017-2422-z] [PMID] [PMCID]
36. Vellanki SHK, Grabrucker A, Liebau S, Proepper C, Eramo A, Braun V, et al. Small-molecule XIAP inhibitors enhance γ-irradiation-induced apoptosis in glioblastoma. Neoplasia. 2009;11(8):743-52. [DOI:10.1593/neo.09436] [PMID] [PMCID]
37. Tong X, Yang P, Wang K, Liu Y, Liu X, Shan X, et al. Survivin is a prognostic indicator in glioblastoma and may be a target of microRNA‑218. Oncol Lett. 2019;18(1):359-367. [DOI:10.3892/ol.2019.10335] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb