Volume 11, Issue 1 (Vol.11 No.1 Apr 2022)                   rbmb.net 2022, 11(1): 146-156 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alkhateeb H H, Kaplan N M, Al-duais M. Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach. rbmb.net. 2022; 11 (1) :146-156
URL: http://rbmb.net/article-1-839-en.html
Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
Abstract:   (581 Views)
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many drawbacks. Accordingly, to simplify identification of  mechanisms by which oleuropein regulates specific cellular processes, we resort, in the present study, to isolated muscle preparation which enables better metabolic milieu control and permit more detailed analyses.

Methods: For this purpose, soleus muscles were incubated for 12 h without or with palmitate (1.5 mM) in the presence or absence of oleuropein (1.5 mM), and compound C. Insulin-stimulated glucose transport, glucose transporter type 4 (GLUT4) translocation, Akt substrate of 160 kDa (AS160) hosphorylation and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation were examined.

Results: Palmitate treatment reduced insulin-stimulated glucose transport, GLUT4 translocation and AS160 phosphorylation, but AMPK phosphorylation was not changed. Oleuropein administration (12 h) fully rescued insulin-stimulated glucose transport, but partially restored GLUT4 translocation. However, it fully restored AS160 phosphorylation, raising the possibility that oleuropein may also have contributed to the restoration of glucose transport by increased GLUT4 intrinsic activity. Inhibition of AMPK phosphorylation with compound C (50 μM) prevented oleuropein -induced improvements in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation.

Conclusions: Our results clearly indicate that oleuropein alleviates palmitate-induced insulin resistance appears to occur via an AMPK-dependent mechanism involving improvements in the functionality of the AS160-GLUT4 signaling system.
Full-Text [PDF 361 kb]   (295 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/12/22 | Accepted: 2021/12/25 | Published: 2022/05/26

1. Howlett HC, Bailey CJ. A risk-benefit assessment of metformin in type 2 diabetes mellitus. Drug Saf. 1999;20(6):489-503. [DOI:10.2165/00002018-199920060-00003] [PMID]
2. Rigacci S, Stefani M. Nutraceutical properties of olive oil polyphenols. an itinerary from cultured cells through animal models to humans. Int J Mol Sci. 2016;17(6):843. [DOI:10.3390/ijms17060843] [PMID] [PMCID]
3. Marino S, Festa C, Zollo F, Nini A, Antenucci L, Raimo G, et al. Antioxidant activity and chemical components as potential anticancer agents in the olive leaf (olea europaea l. Cv leccino.) Decoction. Anticancer Agents Med Chem. 2014;14(10):1376-85. [DOI:10.2174/1871520614666140804153936] [PMID]
4. Bulotta S, Celano M, Lepore SM, Montalcini T, Pujia A, Russo D. Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases. J Transl Med. 2014;12:219. [DOI:10.1186/s12967-014-0219-9] [PMID] [PMCID]
5. Barbaro B, Toietta G, Maggio R, Arciello M, Tarocchi M, Galli A, et al. Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci. 2014;15(10):18508-18524. [DOI:10.3390/ijms151018508] [PMID] [PMCID]
6. Murotomi K, Umeno A, Yasunaga M, Shichiri M, Ishida N, Koike T, et al. Oleuropein-Rich Diet Attenuates Hyperglycemia and Impaired Glucose Tolerance in Type 2 Diabetes Model Mouse. J Agric Food Chem. 2015;63(30):6715-22. [DOI:10.1021/acs.jafc.5b00556] [PMID]
7. Nekooeian A, Khalili A, Khosravi M. Oleuropein offers cardioprotection in rats with simultaneous Type 2 diabetes and renal hypertension. Indian J Pharmacol. 2014;46(4):398-403. [DOI:10.4103/0253-7613.135951] [PMID] [PMCID]
8. Sangi SA, Sulaiman M, El-wahab MA, Ahmedani E, Ali S. Antihyperglycemic effect of thymoquinone and oleuropein, on streptozotocin-induced diabetes mellitus in experimental animals. Pharmacogn Mag. 2015;11(Suppl 2):S251-7. [DOI:10.4103/0973-1296.166017] [PMID] [PMCID]
9. Hadrich F, Garcia M, Maalej A, Moldes M, Isoda H, Feve B, et al. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells. Life Sci. 2016;151:167-173. [DOI:10.1016/j.lfs.2016.02.027] [PMID]
10. Jemai H, Feki AEL, Sayadi S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J Agric Food Chem. 2009;57(19):8798-804. [DOI:10.1021/jf901280r] [PMID]
11. Alkhateeb H, Chabowski A, Bonen A. Viability of the isolated soleus muscle during long-term incubation. Appl Physiol Nutr Metab. 2006;31(4):467-76. [DOI:10.1139/h06-022] [PMID]
12. Alkhateeb H, Chabowski A, Glatz JFC, Gurd B, Luiken JJFP, Bonen A. Restoring AS160 phosphorylation rescues skeletal muscle insulin resistance and fatty acid oxidation while not reducing intramuscular lipids. Am J Physiol Endocrinol Metab. 2009;297(5):E1056-66. [DOI:10.1152/ajpendo.90908.2008] [PMID]
13. Reaven GM. The insulin resistance syndrome: definition and dietary approaches to treatment. Annu Rev Nutr. 2005;25:391-406. [DOI:10.1146/annurev.nutr.24.012003.132155] [PMID]
14. Solinas G, Summermatter S, Mainieri D, Gubler M, Pirola L, Wymann MP, et al. The direct effect of leptin on skeletal muscle thermogenesis is mediated by substrate cycling between de novo lipogenesis and lipid oxidation. FEBS Letters. 2004;577(3):539-44. [DOI:10.1016/j.febslet.2004.10.066] [PMID]
15. Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes. 2004;5(4):219-26. [DOI:10.1111/j.1399-543X.2004.00071.x] [PMID]
16. Watson RT, Pessin JE. Subcellular compartmentalization and trafficking of the insulin-responsive glucose transporter, GLUT4. Exp Cell Res. 2001;271(1):75-83. [DOI:10.1006/excr.2001.5375] [PMID]
17. Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799-806. [DOI:10.1038/414799a] [PMID]
18. Smith AG, Muscat GEO. Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol. 2005;37(10):2047-63. [DOI:10.1016/j.biocel.2005.03.002] [PMID]
19. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895-908. [DOI:10.1101/gad.17420111] [PMID] [PMCID]
20. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167-74. [DOI:10.1172/JCI13505] [PMID] [PMCID]
21. Alkhateeb H, Bonen A. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R804-12. [DOI:10.1152/ajpregu.00216.2010] [PMID]
22. Al-Trad B, Alkhateeb H, Alsmadi W, Al-Zoubi M. Eugenol ameliorates insulin resistance, oxidative stress and inflammation in high fat-diet/streptozotocin-induced diabetic rat. Life Sci. 2019;216:183-188. [DOI:10.1016/j.lfs.2018.11.034] [PMID]
23. Zhang YJ, Zhao H, Dong L, Zhen YF, Xing HY, Ma HJ, et al. Resveratrol ameliorates high-fat diet-induced insulin resistance and fatty acid oxidation via ATM-AMPK axis in skeletal muscle. Eur Rev Med Pharmacol Sci. 2019;23(20):9117-9125.
24. Højlund K, Mustard KJ, Staehr P, Hardie DG, Beck-Nielsen H, Richter EA, et al. AMPK activity and isoform protein expression are similar in muscle of obese subjects with and without type 2 diabetes. Am J Physiol Endocrinol Metab. 2004;286(2):E239-44. [DOI:10.1152/ajpendo.00326.2003] [PMID]
25. Alkhateeb H, Al-Duais M, Qnais E. Beneficial effects of oleuropein on glucose uptake and on parameters relevant to the normal homeostatic mechanisms of glucose regulation in rat skeletal muscle. Phyther Res. 2018;32(4):651-656. [DOI:10.1002/ptr.6012] [PMID]
26. Olsen GS, Hansen BF. AMP kinase activation ameliorates insulin resistance induced by free fatty acids in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2002;283(5):E965-70. [DOI:10.1152/ajpendo.00118.2002] [PMID]
27. Thompson AL, Lim-Fraser MY, Kraegen EW, Cooney GJ. Effects of individual fatty acids on glucose uptake and glycogen synthesis in soleus muscle in vitro. Am J Physiol Endocrinol Metab. 2000;279(3):E577-84. [DOI:10.1152/ajpendo.2000.279.3.E577] [PMID]
28. Alkhateeb H, Qnais E. Preventive effect of oleate on palmitate-induced insulin resistance in skeletal muscle and its mechanism of action. J Physiol Biochem. 2017;73(4):605-612. [DOI:10.1007/s13105-017-0594-9] [PMID]
29. Alkhateeb H, Bonen A. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am J Physiol Regul Integr Comp Physio. 2010;299(3):R804-12. [DOI:10.1152/ajpregu.00216.2010] [PMID]
30. Alkhateeb H, Qnais E. Preventive effect of oleate on palmitate-induced insulin resistance in skeletal muscle and its mechanism of action. J Physiol Biochem. 2017;73(4):605-612. [DOI:10.1007/s13105-017-0594-9] [PMID]
31. Fujiwara Y, Tsukahara C, Ikeda N, Sone Y, Ishikawa T, Ichi I, et al. Oleuropein improves insulin resistance in skeletal muscle by promoting the translocation of GLUT4. J Clin Biochem Nutr. 2017;61(3):196-202. [DOI:10.3164/jcbn.16-120] [PMID] [PMCID]
32. Xu PT, Song Z, Zhang WC, Jiao B, Yu ZB. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle. Biomed Res Int. 2015;2015:291987. [DOI:10.1155/2015/291987] [PMID] [PMCID]
33. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 2007;5(4):237-52. [DOI:10.1016/j.cmet.2007.03.006] [PMID]
34. Maria Z, Campolo AR, Lacombe VA. Diabetes alters the expression and translocation of the insulin-sensitive glucose transporters 4 and 8 in the atria. PLoS One. 2015;10(12):e0146033. [DOI:10.1371/journal.pone.0146033] [PMID] [PMCID]
35. Thong FSL, Bilan PJ, Klip A. The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes. 2007;56(2):414-23. [DOI:10.2337/db06-0900] [PMID]
36. Bruss MD, Arias EB, Lienhard GE, Cartee GD. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes. 2005;54(1):41-50. [DOI:10.2337/diabetes.54.1.41] [PMID]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb