Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 282-288 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bemani P, Moazen S, Nadimi E, Nejatollahi F. Development of Human Recombinant Antibodies Against ROR1 Tumor Antigen. rbmb.net. 2022; 11 (2) :282-288
URL: http://rbmb.net/article-1-869-en.html
Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz Iran
Abstract:   (799 Views)
Background: Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal antigen expressed on many types of cancer cells, but not normal adult cells. ROR1 antigen contributes to cancer development and progression by several signaling pathways. ROR1 expression has been associated with tumor growth, survival, and metastasis. In this study specific human recombinant antibodies were selected against ROR1 antigen for their use in cancer immunotherapy.

Methods: Phage display technology was used to produce phage antibody from a human scFv library. Phage concentration was determined to confirm the phage rescue process. Panning procedure was performed to isolate specific scFv clones against ROR1 epitope. Phage ELISA was done to evaluate the reactivity of the selected scFvs.

Results: Two specific human scFvs with frequencies of 20% and 25% were selected against ROR1 peptide. The antibodies showed specific reaction to the corresponding epitopes in phage ELISA. 

Conclusions: Cancer targeted therapy using human specific antibodies is a new strategy, which is used in cancer therapy. The selected specific scFvs that target ROR1 epitope are human antibodies that originated from a human library and have the potential to be used in clinic in cancer immunotherapy of ROR1 positive tumors without induction of human anti mouse antibody (HAMA) response.
Full-Text [PDF 261 kb]   (260 Downloads)    
Type of Article: Original Article | Subject: Immunology
Received: 2022/02/5 | Accepted: 2022/02/7 | Published: 2022/08/7

References
1. Lin L, Yan L, Liu Y, Yuan F, Li H, Ni J. Incidence and death in 29 cancer groups in 2017 and trend analysis from 1990 to 2017 from the Global Burden of Disease Study. J Hematol Oncol. 2019;12:96. [DOI:10.1186/s13045-019-0783-9] [PMID] [PMCID]
2. Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, et al. Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy. Int J Mol Sci. 2021;22(17):9118. [DOI:10.3390/ijms22179118] [PMID] [PMCID]
3. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nature reviews Cancer. 2012;12(4):237-51. [DOI:10.1038/nrc3237] [PMID] [PMCID]
4. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201. [DOI:10.1038/s41392-021-00572-w] [PMID] [PMCID]
5. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009;31(3):457-68. [DOI:10.1016/j.immuni.2009.07.002] [PMID]
6. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nature reviews Cancer. 2012;12(4):278-287. [DOI:10.1038/nrc3236] [PMID]
7. Baskar S, Wiestner A, Wilson WH, Pastan I, Rader C. Targeting malignant B cells with an immunotoxin against ROR1. MAbs. 2012;4(3):349-61. [DOI:10.4161/mabs.19870] [PMID] [PMCID]
8. Minami Y, Oishi I, Endo M, Nishita M. Ror‐family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases. Dev Dyn. 2010;239(1):1-15. [DOI:10.1002/dvdy.21991] [PMID]
9. Zhao Y, Zhang D, Guo Y, Lu B, Zhao ZJ, Xu X, et al. Tyrosine kinase ROR1 as a target for anti-cancer therapies. Front Oncol. 2021;11:680834. [DOI:10.3389/fonc.2021.680834] [PMID] [PMCID]
10. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res. 2013;19(12):3153-64. [DOI:10.1158/1078-0432.CCR-13-0330] [PMID] [PMCID]
11. Widhopf GF, Cui B, Ghia EM, Chen L, Messer K, Shen Z, et al. ROR1 can interact with TCL1 and enhance leukemogenesis in Eµ-TCL1 transgenic mice. Proc Natl Acad Sci U S A. 2014;111(2):793-8. [DOI:10.1073/pnas.1308374111] [PMID] [PMCID]
12. Zhang S, Chen L, Cui B, Chuang H-Y, Yu J, Wang-Rodriguez J, et al. ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PloS one. 2012;7(3):e31127. [DOI:10.1371/journal.pone.0031127] [PMID] [PMCID]
13. Cui B, Zhang S, Chen L, Yu J, Widhopf GF 2nd, Fecteau JF, et al. Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res. 2013;73(12):3649-60. [DOI:10.1158/0008-5472.CAN-12-3832] [PMID] [PMCID]
14. Zhang H, Qiu J, Ye C, Yang D, Gao L, Su Y, et al. ROR1 expression correlated with poor clinical outcome in human ovarian cancer. Scientific reports. 2014;4:5811. [DOI:10.1038/srep05811] [PMID] [PMCID]
15. Zarei N, Fazeli M, Mohammadi M, Nejatollahi F. Cell growth inhibition and apoptosis in breast cancer cells induced by anti-FZD7 scfvs: Involvement of bioinformatics-based design of novel epitopes. Breast Cancer Res Treat. 2018;169(3):427-436. [DOI:10.1007/s10549-017-4641-6] [PMID]
16. Faraji SN, Nejatollahi F, Tamaddon A-M, Mohammadi M, Aminsharifi AR. Generation and characterization of a specific single-chain antibody against DSPP as a prostate cancer biomarker: Involvement of bioinformatics-based design of novel epitopes. Int Immunopharmacol. 2019;69:217-224. [DOI:10.1016/j.intimp.2019.01.016] [PMID]
17. Aghaei Afshar MJ, Robati R, Nejatollahi F. Isolation of Specific Human Recombinant Antibodies Against Glycoprotein 41 of HIV. Rep Biochem Mol Biol. 2019;8(3):310-317.
18. Abdollahzadeh F, Nejatollahi F. Anti-Proliferative Effect of Specific Anti-EGFR Single Chain Antibody on Triple Negative Breast Cancer Cells. Rep Biochem Mol Biol. 2020;9(2):180-187. [DOI:10.29252/rbmb.9.2.180] [PMID] [PMCID]
19. Daneshmanesh A, Hojjat-Farsangi M, Khan A, Jeddi-Tehrani M, Akhondi M, Bayat A, et al. Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia. 2012;26(6):1348-55. [DOI:10.1038/leu.2011.362] [PMID]
20. Nejatollahi F, Malek-Hosseini Z, Mehrabani D. Development of single chain antibodies to P185 tumor antigen. Iranian Red Crescent Medical Journal. 2008;10(4):298-302.
21. Nejatollahi F, Hodgetts SJ, Vallely PJ, Burnie JP. Neutralising human recombinant antibodies to human cytomegalovirus glycoproteins gB and gH. FEMS Immunol Med Microbiol. 2002;34(3):237-44. [DOI:10.1111/j.1574-695X.2002.tb00630.x] [PMID]
22. Mohammadi M, Nejatollahi F, Ghasemi Y, Faraji SN. Anti-metastatic and anti-invasion effects of a specific anti-MUC18 scFv antibody on breast cancer cells. Appl Biochem Biotechnol. 2017;181(1):379-390. [DOI:10.1007/s12010-016-2218-1] [PMID]
23. Younesi V, Nejatollahi F. Induction of anti-proliferative and apoptotic effects by anti-IL-25 receptor single chain antibodies in breast cancer cells. Int Immunopharmacol. 2014;23(2):624-32. [DOI:10.1016/j.intimp.2014.10.015] [PMID]
24. Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv. 2009;27(4):502-20. [DOI:10.1016/j.biotechadv.2009.04.004] [PMID]
25. Zhang S, Chen L, Wang-Rodriguez J, Zhang L, Cui B, Frankel W, et al. The onco-embryonic antigen ROR1 is expressed by a variety of human cancers. Am J Pathol. 2012;181(6):1903-10. [DOI:10.1016/j.ajpath.2012.08.024] [PMID] [PMCID]
26. Menck K, Heinrichs S, Baden C, Bleckmann A. The WNT/ROR pathway in cancer: from signaling to therapeutic intervention. Cells. 2021;10(1):142. [DOI:10.3390/cells10010142] [PMID] [PMCID]
27. Oloketuyi S, Bernedo R, Christmann A, Borkowska J, Cazzaniga G, Schuchmann HW, et al. Native llama Nanobody Library Panning Performed by Phage and Yeast Display Provides Binders Suitable for C-Reactive Protein Detection. Biosensors (Basel). 2021;11(12):496. [DOI:10.3390/bios11120496] [PMID] [PMCID]
28. Anand T, Virmani N, Bera BC, Vaid RK, Vashisth M, Bardajatya P, et al. Phage display technique as a tool for diagnosis and antibody selection for coronaviruses. Curr Microbiol. 2021;78(4):1124-1134. [DOI:10.1007/s00284-021-02398-9] [PMID] [PMCID]
29. Rami A, Behdani M, Yardehnavi N, Habibi-Anbouhi M, Kazemi-Lomedasht F. An overview on application of phage display technique in immunological studies. Asian Pacific Journal of Tropical Biomedicine. 2017;7(7):599-602. [DOI:10.1016/j.apjtb.2017.06.001]
30. Thathaisong U, Maneewatch S, Kulkeaw K, Thueng-In K, Poungpair O, Srimanote P, et al. Human monoclonal single chain anti-bodies (HuScFv) that bind to the poly-merase proteins of influenza A virus. Asian Pac J Allergy Immunol. 2008;26(1):23-35.
31. Cui B, Ghia EM, Chen L, Rassenti LZ, DeBoever C, Widhopf GF, et al. High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood. 2016;128(25):2931-2940. [DOI:10.1182/blood-2016-04-712562] [PMID] [PMCID]
32. Ferrara F, Erasmus MF, D'Angelo S, Leal-Lopes C, Teixeira AA, Choudhary A, et al. A pandemic-enabled comparison of discovery platforms demonstrates a naïve antibody library can match the best immune-sourced antibodies. Nature Communications. 2022;13(1):1-12. https://doi.org/10.1038/s41467-022-29876-3 [DOI:10.1038/s41467-021-27799-z] [PMID] [PMCID]
33. Yu J, Chen L, Chen Y, Hasan MK, Ghia EM, Zhang L, et al. Wnt5a induces ROR1 to associate with 14-3-3ζ for enhanced chemotaxis and proliferation of chronic lymphocytic leukemia cells. Leukemia. 2017;31(12):2608-2614. [DOI:10.1038/leu.2017.132] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb