Volume 11, Issue 3 (Vol.11 No.3 Oct 2022)                   rbmb.net 2022, 11(3): 479-486 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maradi R, Joshi V, Balamurugan V, Susan Thomas D, Goud M. Importance of Microminerals for Maintaining Antioxidant Function after COVID-19-induced Oxidative Stress. rbmb.net 2022; 11 (3) :479-486
URL: http://rbmb.net/article-1-972-en.html
Department of Biochemistry and Molecular Biology, Drexel University college of Medicine, Innovation Way, Wyomissing, 19610, Pennsylvania, USA.
Abstract:   (386 Views)
Background: COVID-19 is caused by the Severe Acute Respiratory Distress Syndrome Coronavirus 2. Since the antioxidant mechanisms such as glutathione peroxidase or superoxide dismutase are downregulated during infection by the virus, there is an imbalance in the oxidant-antioxidant system. In this study we aimed to identify the effect of COVID-19 on the antioxidant defense mechanism by comparing the concentrations of antioxidants and microminerals in COVID-19 patients and healthy controls.

Methods: This cross-sectional analytical study involved 200 patients at Kasturba Hospital, Manipal University. The serum concentrations of antioxidants and minerals were determined to establish the impact of COVID-19 on antioxidants mechanism and nutrient status in COVID-19 patients.

Results: The serum concentrations of GPX (10.36 ± 2.70 ≥ 5.82 ± 1.64 mKAT/L, p < 0.0001) and copper (2192.5 ± 449.8 ≥ 782.15 ± 106.5 µg/dL, p < 0.0001) were significantly greater, and zinc (34.78 ± 4.5 ≤ 81.07 ± 10.13 µg/dL, p < 0.0001) was significantly less, in the study group than in controls. The Pearson correlation between serum SOD and zinc was significant (r = 0.491, p < 0.0001) indicating the importance of zinc in maintaining and improving SOD activity. No significant correlations were observed between copper and SOD (r = -0.089) or iron and CAT (r = -0.027).

Conclusions: Our study demonstrated the expected increase in oxidant-radical production during COVID-19 by estimating the altered concentrations of antioxidants and the minerals required to neutralize the elevated ROS. This finding is not novel but adds to the existing literature, which recommends nutritional supplementation of microminerals and antioxidants.
Full-Text [PDF 210 kb]   (154 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2022/06/13 | Accepted: 2022/06/24 | Published: 2022/12/31

References
1. Umakanthan S, Sahu P, Ranade AV, Bukelo MM, Rao JS, Abrahao-Machado LF, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753-758.
2. Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, Jiang B. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet. 2020;395(10228):e52. [DOI:10.1016/S0140-6736(20)30558-4] [PMID]
3. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635-64. [DOI:10.1128/MMBR.69.4.635-664.2005] [PMID] [PMCID]
4. Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006;13(8):751-2. [DOI:10.1038/nsmb1123] [PMID] [PMCID]
5. Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature. 1984;308(5961):751-2. [DOI:10.1038/308751a0] [PMID] [PMCID]
6. Mostafa-Hedeab G. ACE2 as Drug Target of COVID-19 Virus Treatment, Simplified Updated Review. Rep Biochem Mol Biol. 2020;9(1):97-105. [DOI:10.29252/rbmb.9.1.97] [PMID] [PMCID]
7. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9. [DOI:10.1038/nm1267] [PMID] [PMCID]
8. Ratajczak MZ, Bujko K, Ciechanowicz A, Sielatycka K, Cymer M, Marlicz W, Kucia M. SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45- Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome. Stem Cell Rev Rep. 2021;17(1):266-277. [DOI:10.1007/s12015-020-10010-z] [PMID] [PMCID]
9. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. [DOI:10.1128/JVI.00127-20] [PMID] [PMCID]
10. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477-489. [DOI:10.1038/s41577-019-0165-0] [PMID] [PMCID]
11. Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress. 2020;4(4):66-75. [DOI:10.15698/cst2020.04.216] [PMID] [PMCID]
12. Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons from the Past. Front Immunol. 2020;11:1949. [DOI:10.3389/fimmu.2020.01949] [PMID] [PMCID]
13. Dittrich AM, Meyer HA, Krokowski M, Quarcoo D, Ahrens B, Kube SM, et al. Glutathione peroxidase-2 protects from allergen-induced airway inflammation in mice. Eur Respir J. 2010;35(5):1148-54. [DOI:10.1183/09031936.00026108] [PMID] [PMCID]
14. Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, Isaguliants MG. Oxidative Stress during HIV Infection: Mechanisms and Consequences. Oxid Med Cell Longev. 2016;2016:8910396. [DOI:10.1155/2016/8910396] [PMID] [PMCID]
15. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036-1045.e9. [DOI:10.1016/j.cell.2020.04.026] [PMID] [PMCID]
16. Chabot F, Mitchell JA, Gutteridge JM, Evans TW. Reactive oxygen species in acute lung injury. Eur Respir J. 1998;11(3):745-57. [DOI:10.1183/09031936.98.11030745] [PMID]
17. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102. [DOI:10.1016/j.mehy.2020.110102] [PMID] [PMCID]
18. Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients. 2020;12(5):1466. [DOI:10.3390/nu12051466] [PMID] [PMCID]
19. Hanschmann EM, Berndt C, Hecker C, Garn H, Bertrams W, Lillig CH, Hudemann C. Glutaredoxin 2 Reduces Asthma-Like Acute Airway Inflammation in Mice. Front Immunol. 2020;11:561724. [DOI:10.3389/fimmu.2020.561724] [PMID] [PMCID]
20. Kim DW, Jeong HJ, Kang HW, Shin MJ, Sohn EJ, et al. Transduced human PEP-1-catalase fusion protein attenuates ischemic neuronal damage. Free Radic Biol Med. 2009;47(7):941-52. [DOI:10.1016/j.freeradbiomed.2009.06.036] [PMID]
21. Joshi V, Mallick A, Goud B, Maradi R, Reddy MG. Effect of serum copper concentration and ceruloplasmin on lipid parameters leading to increased propensity to cardiovascular risk. Res J Pharm Biol Chem Sci. 2011;2: 558-563.
22. Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020;12(10):3198. [DOI:10.3390/nu12103198] [PMID] [PMCID]
23. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176. [DOI:10.1371/journal.ppat.1001176] [PMID] [PMCID]
24. Banerjee AK, Joshi VR, Maradi R, Mallick AK. Effect of altered levels of micronutrients on lipid parameters in thyroid dysfunction. Int J Appl Biol Pharm. 2011; 2:235-9.
25. Mariani E, Mangialasche F, Feliziani FT, Cecchetti R, Malavolta M, Bastiani P, et al. Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Exp Gerontol. 2008;43(5):445-51. [DOI:10.1016/j.exger.2007.10.012] [PMID]
26. Maradi R, Joshi VR, Mallick AK, Reddy GM, Shorey G, Tey RV. A correlation study between serum zinc and plasma total cholesterol, high density, and low-density lipoprotein cholesterol in thyroid dysfunction. Int J Pharm Sci Rev Res. 2011;7(2):122-4.
27. Fontanet A, Autran B, Lina B, Kieny MP, Karim SSA, Sridhar D. SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet. 2021;397(10278):952-954. [DOI:10.1016/S0140-6736(21)00370-6] [PMID]
28. Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol. 2020;11:570122. [DOI:10.3389/fimmu.2020.570122] [PMID] [PMCID]
29. Muhammad Y, Kani YA, Iliya S, Muhammad JB, Binji A, El-Fulaty Ahmad A, Kabir MB, Umar Bindawa K, Ahmed A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021;9:2050312121991246. [DOI:10.1177/2050312121991246] [PMID] [PMCID]
30. Anuk AT, Polat N, Akdas S, Erol SA, Tanacan A, Biriken D, et al. The Relation Between Trace Element Status (Zinc, Copper, Magnesium) and Clinical Outcomes in COVID-19 Infection During Pregnancy. Biol Trace Elem Res. 2021;199(10):3608-3617. [DOI:10.1007/s12011-020-02496-y] [PMID] [PMCID]
31. Macdougall LG. Red cell metabolism in iron-deficiency anemia. J Pediatr. 1968;72(3):303-18. [DOI:10.1016/S0022-3476(68)80201-X] [PMID]
32. Bastin A, Shiri H, Zanganeh S, Fooladi S, Momeni Moghaddam MA, Mehrabani M, Nematollahi MH. Iron Chelator or Iron Supplement Consumption in COVID-19? The Role of Iron with Severity Infection. Biol Trace Elem Res. 2022;200(11):4571-4581. D [DOI:10.1007/s12011-021-03048-8] [PMID] [PMCID]
33. Altuhafi A, Altun M, Hadwan MH. The Correlation between Selenium-Dependent Glutathione Peroxidase Activity and Oxidant/Antioxidant Balance in Sera of Diabetic Patients with Nephropathy. Rep Biochem Mol Biol. 2021;10(2):164-172. [DOI:10.52547/rbmb.10.2.164] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb