Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 262-269 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Al-Fahad D, Alyaseen F, Al-Amery A, Singh G, Srinath M, Abbas Y, et al . Kinetic Changes of Ptdins (3,4,5) P3 within Fast and Slow Turnover Rates of Focal Adhesion. rbmb.net 2022; 11 (2) :262-269
URL: http://rbmb.net/article-1-849-en.html
Department of Pharmaceutical Sciences, College of Pharmacy University of Thi-Qar, Thi-Qar 64001, Iraq.
Abstract:   (1634 Views)
Background: The assembly and disassembly of the focal adhesions (FA) components occurs throughout life cycle of adhesion, with conservation of balance between removal and recruitment rate during temporal stages. Previous studies have demonstrated that phosphotidyilinositols play a role in regulating FA turnover. However, a little attention has been given to quantify the dynamics changes of Phosphatidylinositol 3,4,5-trisphosphate (PtdIns (3,4,5) P3) within and during fast and slow turnover rates of FA.

Methods: MDA-MB-231 breast cancer cell line was used as a model in this study due to high metastatic and motile. These cells were co-transfected with GFP- paxillin/vinculin, as FA marker, and the GFP/mCherry-Btk-PH, as a biosensor to visualize PtdIns (3,4,5) P3. Confocal time-lapse images were used
to monitor changes or differences in the local generation of PtdIns (3,4,5) P3 within and during assembly and disassembly of FA. Following transfection, immunostaining was used to examine the spatial colocalization between FA and PtdIns (3,4,5) P3.

Results: Our data demonstrated that PtdIns (3,4,5) P3 co-localized with FAs and increase during assembly and decline during disassembly of FA which exhibits slow turnover rates and was in a constant level during assembly and disassembly of FA that displays fast turnover rates. 

Conclusions: Our result suggested that the dynamic changes of PtdIns (3,4,5) P3, it may depend on components undergo turnover, such that early, nascent FA displays fast turnover rates and mature FA exhibits slow turnover rates. Thus, the local enrichment of PtdIns (3,4,5) P3 enhances FA assembly and disassembly activation.
Full-Text [PDF 280 kb]   (971 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2022/01/2 | Accepted: 2022/01/2 | Published: 2022/08/7

1. Alharbi BF, Al-Fahad D, Dash PR. Roles of Endocytic Processes and Early Endosomes on Focal Adhesion Dynamics in MDA-MB-231 Cells 31 Cells. Rep Biochem Mol Biol. 2021;10(2):145-155. [DOI:10.52547/rbmb.10.2.145] [PMID] [PMCID]
2. Al-Fahad D, Alharbi BF, Bih CI, Dash PR. Nitric oxide may regulate focal adhesion turnover and cell migration in MDA-MB-231 breast cancer cells by modulating early endosome trafficking. Med J Cell Biol. 2021;9(2):60-72 [DOI:10.2478/acb-2021-0010]
3. Alfahad D, Alharethi S, Alharbi B, MawloodK, Dash P. PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics during focal adhesions assembly and disassembly in a cancer cell line. Turk J Biol. 2020;44(6):381-392. [DOI:10.3906/biy-2004-108] [PMID] [PMCID]
4. Al-Fahad D. Regulation of Focal Adhesions by PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in Cancer Cell Migration. University of Reading. 2018.
5. Al-Fahad D. The possible role of PtdIns (4,5) P2 and PtdIns(3,4,5)P3 at the leading and trailing edges of the breast cancer cell line. I Iberoam J Med. 2021;3(1):26-32. [DOI:10.53986/ibjm.2021.0006]
6. Al-Fahad D, Al-Harbi B, Abbas Y, Al-Yaseen F. A Comparative Study to Visualize Ptdins (4,5) P2 and Ptdins(3,4,5)P3 in MDA-MB-231 Breast Cancer Cell Line. Rep Biochem Mol Biol. 2022;10(2):518-526. [DOI:10.52547/rbmb.10.4.518] [PMID] [PMCID]
7. Zaidel-Bar R, Cohen M, Addadi L, Geiger B. Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans. 2004; 32(Pt3):416-20. [DOI:10.1042/bst0320416] [PMID]
8. Fogh BS, Multhaupt HAB, Couchman JR. Protein Kinase C, Focal Adhesions and the Regulation of Cell Migration. J Histochem Cytochem. 2014;62(3):172-84. [DOI:10.1369/0022155413517701] [PMID] [PMCID]
9. GIANNONE G. Super-resolution links vinculin localization to function in focal adhesions. Nature Cell Biology. 2015;17(7):845-847. [DOI:10.1038/ncb3196] [PMID]
10. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010;468(7323):580-4. [DOI:10.1038/nature09621] [PMID] [PMCID]
11. Morimatsu M, Mekhdjian AH, Chang AC, Tan SJ, Dunn AR. Visualizing the interior architecture of focal adhesions with high-resolution traction maps. Nano Lett. 2015;15(4):2220-8. [DOI:10.1021/nl5047335] [PMID] [PMCID]
12. Shen B, Delaney MK, Du X. Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol. 2012;24(5):600-6. [DOI:10.1016/j.ceb.2012.08.011] [PMID] [PMCID]
13. Shi Q, Boettiger D. novel mode for integrin-mediated signaling: tethering is required for phosphorylation of FAK Y397. Mol Biol Cell. 200314(10):4306-4315. [DOI:10.1091/mbc.e03-01-0046] [PMID] [PMCID]
14. Ren XD, Kiosses WB, Sieg DJ, Otey CA, Schlaepfer DD, Schwartz MA. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci. 2000;113(Pt20):3673-8. [DOI:10.1242/jcs.113.20.3673] [PMID]
15. Brown MC, Perrotta JA, Turner CE. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol. 1996;135(4):1109-23. [DOI:10.1083/jcb.135.4.1109] [PMID] [PMCID]
16. Kaazempur Mofrad MR, Golji J, Abdul Rahim NA, Kamm RD. Force-induced unfolding of the focal adhesion targeting domain and the influence of paxillin binding. Mech Chem Biosyst. 2004;1(4):253-65.
17. Reddy Kb, Smith Dm, Plow Ef. Analysis of Fyn function in hemostasis and alphaIIbbeta3-integrin signaling. J Cell Sci. 2008;121(Pt10) 1641-8. [DOI:10.1242/jcs.014076] [PMID] [PMCID]
18. Ballestrem C, Hinz B, Imhof BA, Wehrle-Haller B. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. J Cell Biol. 2001;155(7):1319-32. [DOI:10.1083/jcb.200107107] [PMID] [PMCID]
19. Digman MA, Brown CM, Horwitz AR, Mantulin WW, Gratton E. Paxillin dynamics measured during adhesion assembly and disassembly by correlation spectroscopy. Biophys J. 2008;94(7):2819-31. [DOI:10.1529/biophysj.107.104984] [PMID] [PMCID]
20. JI L, Lim J, Danuser G. Fluctuations of intracellular forces during cell protrusion. Nat Cell Biol. 2008;10(12):1393-400. [DOI:10.1038/ncb1797] [PMID] [PMCID]
21. Balla T. Phosphoinositides: Tiny Lipids with Giant Impact on Cell Regulation. Physiological Reviews. 2013;93(3):1019-1137. [DOI:10.1152/physrev.00028.2012] [PMID] [PMCID]
22. WANG J, RICHARDS DA. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol Open. 2012;1(9):857-862. [DOI:10.1242/bio.20122071] [PMID] [PMCID]
23. Falke JJ, Ziemba BP. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells. Chem Phys Lipids. 2014;182:73-9. [DOI:10.1016/j.chemphyslip.2014.01.002] [PMID] [PMCID]
24. Rubashkin MG, Cassereau L, Bainer R, Ch DuFort, Yui Y, Ou G, et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 2014;74(17):4597-611. [DOI:10.1158/0008-5472.CAN-13-3698] [PMID] [PMCID]
25. THAPA N, ANDERSON RA. PIP2 signaling, an integrator of cell polarity and vesicle trafficking in directionally migrating cells. Cell Adh Migr. 2012;6(5):409-412. [DOI:10.4161/cam.21192] [PMID] [PMCID]
26. Huang W, Hung M. Induction of Akt activity by chemotherapy confers acquired resistance. J Formos Med Assoc. 2009;108(3):180-94. [DOI:10.1016/S0929-6646(09)60051-6]
27. Dormann D, Weijer G, Parent CA, Devreotes PN, Weijer CJ. Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development. Curr Biol. 2002;12(14):1178-88. [DOI:10.1016/S0960-9822(02)00950-8]
28. Manna D, Albanese A, Park WS, Cho W. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J Biol Chem. 2007;282(44):32093-105. [DOI:10.1074/jbc.M703517200] [PMID]
29. Balla T, Várnai P. Visualization of cellular phosphoinositide pools with GFP-fused protein-domains. Curr Protoc Cell Biol. 2009;Chapter 24,Unit 24.4. [DOI:10.1002/0471143030.cb2404s42] [PMID] [PMCID]
30. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science. 2000;287(5455):1037-40. [DOI:10.1126/science.287.5455.1037] [PMID] [PMCID]
31. Idevall-Hagren O, Camilli PDe. Detection and manipulation of phosphoinositides. Biochim Biophys Acta. 2015;1851(6):736-45. [DOI:10.1016/j.bbalip.2014.12.008] [PMID] [PMCID]
32. Nguyen H, Yang J, Afkari Y, Park B, Sesaki H, Devreotes P, et al. Engineering ePTEN, an enhanced PTEN with increased tumor suppressor activities. Proc Natl Acad Sci U S A. 2014;111(26):E2684-93. [DOI:10.1073/pnas.1409433111] [PMID] [PMCID]
33. Holt MR, Calle Y, Sutton DH, Critchley DR, Jones GE, Dunn GA. Quantifying cell-matrix adhesion dynamics in living cells using interference reflection microscopy. Journal of Microscopy. 2008;232(1):73-81. [DOI:10.1111/j.1365-2818.2008.02069.x] [PMID]
34. Rid R, Schiefermeier N, Grigoriev I, Victor Small J, Kaverina I. The last but not the least: the origin and significance of trailing adhesions in fibroblastic cells. Cell Motil Cytoskeleton. 2005;61(3):161-71. [DOI:10.1002/cm.20076] [PMID]
35. Zamir E, Katz M, Posen Y, Erez N, Yamada Km, Katz Bz, at al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol. 2000;2(4):191-6. [DOI:10.1038/35008607] [PMID]
36. Insall RH, Weiner OD. PIP3, PIP2, and Cell Movement-Similar Messages, Different Meanings?. Developmental cell. 2001;1(6):743-7. [DOI:10.1016/S1534-5807(01)00086-7]
37. Gilamore AP, Burridge K. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature. 1996;381(6582):531-5. [DOI:10.1038/381531a0] [PMID]
38. Tu Le OT, Cho O, Tran M, Kim J, Chang S, Jou I, et al. Phosphorylation of phosphatidylinositol 4-phosphate 5-kinase gamma by Akt regulates its interaction with talin and focal adhesion dynamics. Biochim Biophys Acta. 2015;1853(10 Pt A):2432-43. [DOI:10.1016/j.bbamcr.2015.07.001] [PMID]
39. Greenwood JA, Theibert A, Prestwich G, Murphy-Ullricha J. Restructuring of focal adhesion plaques by PI 3-kinase. J Cell Biol. 2000;150(3):627-642. [DOI:10.1083/jcb.150.3.627] [PMID] [PMCID]
40. Qin J, Xie Y, Wang B, Hoshino M, Wolff Dw, Zhao J, et al. Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis. Oncogene. 2009;28(16):1853-63. [DOI:10.1038/onc.2009.30] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb