Volume 13, Issue 4 (Vol.13 No.4 Jan 2025)                   rbmb.net 2025, 13(4): 561-569 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Malick Ndour E H, Dione R, Gueye-Tall F, Mara S, Fall G, Kamby C, et al . Usefulness of A Random Spot Urine Proteins-to-Creatinine Ratio to Screen for Increased Albuminuria in Patients with Type 1 Diabetes. rbmb.net 2025; 13 (4) :561-569
URL: http://rbmb.net/article-1-1502-en.html
Department of Pharmaceutical Biochemistry, Faculty of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal.
Abstract:   (183 Views)
Background: Moderately increased albuminuria is a biomarker for early onset diabetic nephropathy. The aim of this study was to evaluate the performance of use proteinuria-to-creatininuria ratio (UPCR) at different cut-off to screen for increased albuminuria using albuminuria-to-creatininuria ratio (UACR) as a gold standard. 

Methods: This was a cross-sectional study. A random spot urine sample was collected from patients with type 1 diabetes to measure albuminuria and total proteinuria using respectively an immunoturbidimetric and a colorimetric assay. Albuminuria was expressed as UACR and proteinuria as UPCR. The area under the curve (AUC) method and the kappa coefficient were used to compare UPCR and UACR.

Results: In 150 diabetic patients, moderately increased albuminuria was detected in 33.3% using UACR and 35.3% using UPCR at 272 mg/g. UPCR thresholds of 130, 150, 180 and 200 mg/g yielded higher detection rates than UACR. However, all UPCR cut-offs showed low diagnostic accuracy (AUC < 70%), and agreement with UACR was mild (kappa < 0.40).

Conclusion: The level of agreement between UPCR and UACR was moderate. It is not sufficient for UPCR to replace UACR to screen for increased albuminuria in patient with type 1 diabetes.
Full-Text [PDF 534 kb]   (86 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2024/10/28 | Accepted: 2025/05/17 | Published: 2025/07/30

References
1. Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, et al. Executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2023;69(8):777‑84. [DOI:10.1093/clinchem/hvad079] [PMID]
2. International Diabetes Federation. IDF. Diabetes Atlas, 10th edn. Brussels, Belgium: 2021.
3. Mbaye MN, Niang K, Sarr A, Mbaye A, Diedhiou D, Ndao MD, et al. Aspects épidémiologiques du diabète au Sénégal : résultats d'une enquête sur les facteurs de risque cardiovasculaire dans la ville de Saint-Louis: epidemiological aspects of diabetes in Senegal : results of a survey on cardiovascular risk factors in Saint-Louis. Médecine Mal Métaboliques. 2011;5(6):659‑64. [DOI:10.1016/S1957-2557(11)70343-1]
4. Derakhshanian H, Djazayery A, Javanbakht MH, Eshraghian MR, Mirshafiey A, Zarei M, et al. The effect of vitamin d on cellular pathways of diabetic nephropathy. Rep Biochem Mol Biol. 2019 Jan;7(2):217-222.
5. Altuhafi A, Altun M, Hadwan MH. The correlation between selenium dependent glutathione peroxidase activity and oxidant/antioxidant balance in sera of diabetic patients with nephropathy. Rep Biochem Mol Biol. 2021;10(2):164-172. [DOI:10.52547/rbmb.10.2.164] [PMID] []
6. Mohammed O, Alemayehu E, Bisetegn H, Debash H, Gedefie A, Ebrahim H, et al. Prevalence of microalbuminuria among diabetes patients in africa: a systematic review and meta-analysis. Diabetes Metab Syndr Obes. 2023;16:2089‑103. [DOI:10.2147/DMSO.S409483] [PMID] []
7. Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. BioMed Res Int. 2021;2021:1‑17. [DOI:10.1155/2021/1497449] [PMID] []
8. Seck S, Ka F, Cisse M. Enquête de prévalence de la maladie rénale chronique dans la région Nord du Sénégal. Néphrologie Thérapeutique. 2014;10(5):399. [DOI:10.1016/j.nephro.2014.07.128]
9. Reutens AT. Epidemiology of diabetic kidney disease. Med Clin North Am. 2013;97(1):1‑18. [DOI:10.1016/j.mcna.2012.10.001] [PMID]
10. Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022;102(2):248‑60. [DOI:10.1016/j.kint.2022.05.012] [PMID]
11. Methven S, MacGregor MS, Traynor JP, O'Reilly DSJ, Deighan CJ. Assessing proteinuria in chronic kidney disease: protein-creatinine ratio versus albumin-creatinine ratio. Nephrol Dial Transplant. 2010;25(9):2991‑6. [DOI:10.1093/ndt/gfq140] [PMID]
12. De Boer IH, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, Khunti K, et al. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020;98(4):S1‑115. [DOI:10.1016/j.kint.2020.06.019] [PMID]
13. Lamb E, Jones G. Kidney function tests. In: Tietz fundamentals of clinical chemistry and molecular diagnostics. St Louis; 2018. p. 359‑76. (Elsevier Inc.)
14. Viteri B, Reid-Adam J. Hematuria and Proteinuria in Children. Pediatr Rev. 2018;39(12):573‑87. [DOI:10.1542/pir.2017-0300] [PMID] []
15. Bökenkamp A. Proteinuria-take a closer look! Pediatr Nephrol. 2020;35(4):533‑41. [DOI:10.1007/s00467-019-04454-w] [PMID] []
16. Ndour EH, Dione R, Gueye-Tall F, Mara S, Deme-Ly I, Seck M, et al. Performances of proteinuria as compared with albuminuria in screening for microalbuminuria during sickle cell anaemia. Adv Biochem. 2024;12(2):76‑84. [DOI:10.11648/j.ab.20241202.14]
17. Ndour EHM, Mnika K, Tall FG, Seck M, Ly ID, Nembaware V, et al. Biomarkers of sickle cell nephropathy in Senegal. PloS One. 2022;17(11):e0273745. [DOI:10.1371/journal.pone.0273745] [PMID] []
18. Schwartz GJ, Mun[Combining Tilde]oz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629‑37. [DOI:10.1681/ASN.2008030287] [PMID] []
19. Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child. 1976;51(11):875‑8. [DOI:10.1136/adc.51.11.875] [PMID] []
20. Liu X. Classification accuracy and cut point selection. Stat Med. 2012;31(23):2676‑86. [DOI:10.1002/sim.4509] [PMID]
21. Biradar SB, Kallaganad GS, Rangappa M, Kashinakunti SV, Retnakaran R. Correlation of spot urine protein-creatinine ratio with 24-hour urinary protein in type 2 diabetes mellitus patients: A cross sectional study. J Res Med Sci Off J Isfahan Univ Med Sci. 2011;16(5):634‑9.
22. Rodby RA, Rohde RD, Sharon Z, Pohl MA, Bain RP, Lewis EJ. The urine protein to creatinine ratio as a predictor of 24-hour urine protein excretion in type 1 diabetic patients with nephropathy. Am J Kidney Dis. 1995;26(6):904‑9. [DOI:10.1016/0272-6386(95)90054-3] [PMID]
23. American Diabetes Association Professional Practice Committee. 6. Glycemic targets: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Supplement_1):S83‑96. [DOI:10.2337/dc22-S006] [PMID]
24. Ellis D, Becker DJ, Daneman D, Lobes L, Drash AL. Proteinuria in children with insulin-dependent diabetes: Relationship to duration of disease, metabolic control, and retinal changes. J Pediatr. 1983;102(5):673‑80. [DOI:10.1016/S0022-3476(83)80232-7] [PMID]
25. Rahlenbeck SI, Gebre-Yohannes A. Prevalence and epidemiology of micro- and macroalbuminuria in Ethiopian diabetic patients. J Diabetes Complications. 1997;11(6):343‑9. [DOI:10.1016/S1056-8727(96)00122-5] [PMID]
26. Halliru H, Musa B, Dahiru S, Koki Y, Adamu S, Adamu S. Microalbuminuria as an index of diabetic nephropathy among chronic diabetic patients in Gumel, North Western Nigeria. J Diabetol. 2016;7(2):3. [DOI:10.4103/2078-7685.198440]
27. Rissassi JRM, Nseka M, Jadoul M, Lepira FB, Mvitu M, Mbenza G, et al. Prévalence et déterminants de la microalbuminurie et de la macroalbuminurie chez les enfants et jeunes adultes diabétiques de type 1 à Kinshasa. Néphrologie Thérapeutique. 2010;6(1):40‑6. [DOI:10.1016/j.nephro.2009.08.001] [PMID]
28. Mathiesen ER, Saurbrey N, Hommel E, Parving HH. Prevalence of microalbuminuria in children with Type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1986;29(9):640‑3. [DOI:10.1007/BF00869263] [PMID]
29. Moayeri H, Dalili H. Prevalence of microalbuminuria in children and adolescents with diabetes mellitus type i. Acta Med Iran. 2006;1:105‑10.
30. Razavi Z, Momtaz HE, Sahari S. Frequency of Microalbuminuria in Type 1 Diabetic Children. Iran J Pediatr. 2009;19(4).
31. Al-Agha A, Ocheltree A, Hakeem A. Occurrence of microalbuminuria among children and adolescents with insulin-dependent diabetes mellitus. Saudi J Kidney Dis Transplant. 2013;24(6):1180. [DOI:10.4103/1319-2442.121276] [PMID]
32. Lutale JJK, Thordarson H, Abbas ZG, Vetvik K. microalbuminuria among type 1 and type 2 diabetic patients of African origin in Dar Es Salaam, Tanzania. BMC Nephrol. 2007;8(1):2. [DOI:10.1186/1471-2369-8-2] [PMID] []
33. Ismail NA, Kasem OM, Abou-El-Asrar M, El-Samahy MH. Epidemiology and management of type 1 diabetes mellitus at the ain shams university pediatric hospital. J Egypt Public Health Assoc. 2008;83(1‑2):107‑32.
34. Moore TH, Shield JP. Prevalence of abnormal urinary albumin excretion in adolescents and children with insulin dependent diabetes: the midac study. microalbinuria in diabetic adolescents and children (midac) research group. Arch Dis Child. 2000;83(3):239‑43. [DOI:10.1136/adc.83.3.239] [PMID] []
35. Skrivarhaug T, Bangstad HJ, Stene LC, Sandvik L, Hanssen KF, Joner G. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic patients in Norway. Diabetologia. 2006;49(2):298‑305. [DOI:10.1007/s00125-005-0082-6] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb