1. Konishi T, Lentsch AB. Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration. Gene Expr. 2017;17(4): 277-287. [
DOI:10.3727/105221617X15042750874156] [
PMID] [
]
2. Mao B, Yuan W, Wu F, Yan Y, Wang B. Autophagy in hepatic ischemia-reperfusion injury. Cell Death Discov. 2023;9(1):115.
https://doi.org/10.1038/s41420-023-01387-0 [
DOI:10.1038/s41420-023-01436-8] [
PMID] [
]
3. El-Bahy AA, Kassem LA, Heikal OA, Mahran LG. Antiapoptotic effect of DDB against hepatic ischemia-reperfusion injury. J Toxicol Sci. 2011;36(2):145-54. [
DOI:10.2131/jts.36.145] [
PMID]
4. Quesnelle KM, Bystrom PV, Toledo-Pereyra LH. Molecular responses to ischemia and reperfusion in the liver. Arch Toxicol. 2015;89:651-7. [
DOI:10.1007/s00204-014-1437-x] [
PMID]
5. Hofmann J, Pühringer M, Steinkellner S, Holl A-S, Meszaros AT, Schneeberger S, et al. Novel, Innovative Models to Study Ischemia/Reperfusion-Related Redox Damage in Organ Transplantation. Antioxidants. 2023;12(1):31. [
DOI:10.3390/antiox12010031] [
PMID] [
]
6. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317. [
DOI:10.1016/B978-0-12-394309-5.00006-7] [
PMID] [
]
7. Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, et al. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg. 2016;33:S57-S70. [
DOI:10.1016/j.ijsu.2016.05.050] [
PMID]
8. Elmorshdy Elsaeed Mohammed Elmorshdy S, Ahmed Shaker G, Helmy Eldken Z, Abdelbadie Salem M, Awadalla A, Mahmoud Abdel Shakour H, et al. Impact of Cerium Oxide Nanoparticles on Metabolic, Apoptotic, Autophagic and Antioxidant Changes in Doxorubicin-Induced Cardiomyopathy: Possible Underlying Mechanisms. Rep Biochem Mol Biol. 2023;12(3):495-511.
9. Souri F, Badavi M, Dianat M, Mard SA, Sarkaki A. Effect of Gallic Acid Pretreatment and SGK1 Enzyme Inhibition on Cardiac Function and Inflammation in a Rat Model of Ischemia-Reperfusion Injury. Rep Biochem Mol Biol. 2023;12(1):159-72.
10. Dogra S, Kar AK, Girdhar K, Daniel PV, Chatterjee S, Choubey A, et al. Zinc oxide nanoparticles attenuate hepatic steatosis development in high-fat-diet fed mice through activated AMPK signaling axis. Nanomedicine. 2019;17:210-22. [
DOI:10.1016/j.nano.2019.01.013] [
PMID]
11. Kim MH. Biological effects of zinc oxide nanoparticles on inflammation. Cellmed. 2016;6(4):23.1-.6. [
DOI:10.5667/tang.2016.0013]
12. El-Bahr SM, Shousha S, Albokhadaim I, Shehab A, Khattab W, Ahmed-Farid O, et al. Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. BMC Vet Res. 2020;16(1):349. [
DOI:10.1186/s12917-020-02482-5] [
PMID] [
]
13. Czyżowska A, Barbasz A. A review: zinc oxide nanoparticles - friends or enemies? Int J Environ Health Res. 2022;32(4):885-901. [
DOI:10.1080/09603123.2020.1805415] [
PMID]
14. Nagar V, Singh T, Tiwari Y, Aseri V, Pandit PP, Chopade RL, et al. ZnO Nanoparticles: Exposure, toxicity mechanism and assessment. Mater Today Proc. 2022;69:56-63. [
DOI:10.1016/j.matpr.2022.09.001]
15. Mohseni Kouchesfahani H, Ostadbagher Kashi A. The protective effect of ZnO nanoparticles on liver and impairments induced by paclitaxel treatment in female Wistar rat. Nova Biologica Reperta. 2016;3(3):218-27. [
DOI:10.21859/acadpub.nbr.3.3.218]
16. Torabi F, Malekzadeh Shafaroudi M, Rezaei N. Combined protective effect of zinc oxide nanoparticles and melatonin on cyclophosphamide-induced toxicity in testicular histology and sperm parameters in adult Wistar rats. Int J Reprod Biomed. 2017;15(7):403-12. [
DOI:10.29252/ijrm.15.7.403] [
PMID] [
]
17. Abbasi-Oshaghi E, Mirzaei F, Mirzaei A. Effects of ZnO nanoparticles on intestinal function and structure in normal/high fat diet-fed rats and Caco-2 cells. Nanomedicine. 2018;13(21):2791-816. [
DOI:10.2217/nnm-2018-0202] [
PMID]
18. Wahab R, Ansari SG, Kim YS, Dar MA, Shin H-S. Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J Alloys Compd. 2008;461(1):66-71. [
DOI:10.1016/j.jallcom.2007.07.029]
19. Jafar Sameri M, Belali R, Neisi N, Noei Razliqi R, Mard SA, Savari F, Azandeh SS. Sodium Hydrosulfide Modification of Mesenchymal Stem Cell-Exosomes Improves Liver Function in CCL4-Induced Hepatic Injury in Mice. Rep Biochem Mol Biol. 2023;11(4):644-655. [
DOI:10.52547/rbmb.11.4.644] [
PMID] [
]
20. Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun. 2022;635:194-202. [
DOI:10.1016/j.bbrc.2022.09.111] [
PMID]
21. Rani V, Verma Y, Rana K, Rana SVS. Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chem Biol Interact. 2018;295:84-92. [
DOI:10.1016/j.cbi.2017.10.009] [
PMID]
22. Roma K, Mohammed S, Sieck B, Naik K, Wahid S. Kratom-induced acute liver injury: A case study and the importance of herbal supplement regulation. J Hepatol. 2023;79(2):581-584. [
DOI:10.1016/j.jhep.2023.04.026] [
PMID]
23. Meng X, Tang GY, Liu PH, Zhao CJ, Liu Q, Li HB. Antioxidant activity and hepatoprotective effect of 10 medicinal herbs on CCl4-induced liver injury in mice. World J Gastroenterol. 2020;26(37):5629-5645. [
DOI:10.3748/wjg.v26.i37.5629] [
PMID] [
]
24. Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, et al. Hesperidin ameliorates liver ischemia/reperfusion injury via activation of the Akt pathway. Mol Med Rep. 2020;22(6):4519-4530. [
DOI:10.3892/mmr.2020.11561] [
PMID] [
]
25. Sameri MJ, Savari F, Hoseinynejad K, Danyaei A, Mard SA. The hepato-protective effect of H2S-modified and non-modified mesenchymal stem cell exosomes on liver ischemia-reperfusion injury in mice: The role of MALAT1. Biochem Biophys Res Commun. 2022;635:194-202. [
DOI:10.1016/j.bbrc.2022.09.111] [
PMID]
26. Liu Y, Lu T, Zhang C, Xu J, Xue Z, Busuttil RW, et al. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury. J Hepatol. 2019;71(4):719-730. [
DOI:10.1016/j.jhep.2019.05.029] [
PMID] [
]
27. Czigany Z, Lurje I, Schmelzle M, Schöning W, Öllinger R, Raschzok N, et al. Ischemia-Reperfusion Injury in Marginal Liver Grafts and the Role of Hypothermic Machine Perfusion: Molecular Mechanisms and Clinical Implications. J Clin Med. 2020;9(3):846. [
DOI:10.3390/jcm9030846] [
PMID] [
]
28. Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Peralta C. Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells. 2019;8(10):1131. [
DOI:10.3390/cells8101131] [
PMID] [
]
29. Ye J, Peng J, Liu K, Zhang T, Huang W. MCTR1 inhibits ferroptosis by promoting NRF2 expression to attenuate hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2022;323(3):G283-G293.. [
DOI:10.1152/ajpgi.00354.2021] [
PMID]
30. Akbari G. Role of Zinc Supplementation on Ischemia/Reperfusion Injury in Various Organs. Biol Trace Elem Res. 2020;196(1):1-9. [
DOI:10.1007/s12011-019-01892-3] [
PMID]
31. Chen Q, Liu Y, Ding X, Li Q, Qiu F, Wang M, et al. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem. 2020;465(1-2):103-114. [
DOI:10.1007/s11010-019-03671-z] [
PMID] [
]
32. Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM, Agostinelli E. BCL2 regulated apoptotic process in myocardial ischemia reperfusion injury. Int J Mol Med. 2021;47(1):23-36. [
DOI:10.3892/ijmm.2020.4781] [
PMID] [
]
33. Elshama SS, Abdallah ME, Abdel-Karim RI. Zinc oxide nanoparticles: therapeutic benefits and toxicological hazards. Open Nanomed J. 2018;5(1):16-22. [
DOI:10.2174/1875933501805010016]
34. Zhang Y, Zhang L, Mao L, Fan J, Jiang X, Li N, et al. Intestinal Microbiota-derived Propionic Acid Protects against Zinc Oxide Nanoparticle-induced Lung Injury. Am J Respir Cell Mol Biol. 2022;67(6):680-694. [
DOI:10.1165/rcmb.2021-0515OC] [
PMID]
35. Pei X, Jiang H, Li C, Li D, Tang S. Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. J Hazard Mater. 2023;442:130039. [
DOI:10.1016/j.jhazmat.2022.130039] [
PMID]
36. Guo T, Fang X, Liu Y, Ruan Y, Hu Y, Wang X, et al. Acute lung inflammation induced by zinc oxide nanoparticles: Evolution and intervention via NRF2 activator. Food Chem Toxicol. 2022;162:112898. [
DOI:10.1016/j.fct.2022.112898] [
PMID]
37. Kaur T, Bala M, Kumar G, Vyas A. Biosynthesis of zinc oxide nanoparticles via endophyte Trichoderma viride and evaluation of their antimicrobial and antioxidant properties. Arch Microbiol. 2022;204(10):620. [
DOI:10.1007/s00203-022-03218-9] [
PMID]
38. Dkhil MA, Al-Quraishy S, Wahab R. Anticoccidial and antioxidant activities of zinc oxide nanoparticles on Eimeria papillata-induced infection in the jejunum. Int J Nanomedicine. 2015;10:1961-8. [
DOI:10.2147/IJN.S79944] [
PMID] [
]
39. Virgen-Ortiz A, Apolinar-Iribe A, Díaz-Reval I, Parra-Delgado H, Limón-Miranda S, Sánchez-Pastor EA, et al, Rodríguez-Hernández A. Zinc Oxide Nanoparticles Induce an Adverse Effect on Blood Glucose Levels Depending on the Dose and Route of Administration in Healthy and Diabetic Rats. Nanomaterials. 2020;10(10):2005. [
DOI:10.3390/nano10102005] [
PMID] [
]
40. Fujihara J, Nishimoto N. Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction. Biol Trace Elem Res. 2024;202(1):9-23.
https://doi.org/10.1007/s12011-023-03671-7 [
DOI:10.1007/s12011-023-03644-w]