Volume 10, Issue 1 (Vol.10 No.1 Apr 2021)                   rbmb.net 2021, 10(1): 1-12 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirzaei B, Babaei R, Haghshenas M R, Hagshenas M R, Mohammadi F, Homayoni P et al . PIA and rSesC Mixture Arisen Antibodies Could Inhibit the Biofilm-Formation in Staphylococcus aureus. rbmb.net. 2021; 10 (1) :1-12
URL: http://rbmb.net/article-1-574-en.html
Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences. & Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Science.
Abstract:   (1199 Views)
Background: Staphylococcus aureus as a causative agent of hospital-acquired infections has been considered as the primary concern in biomaterial-related infections (BAIs).

Methods: Following the purification of polysaccharide intercellular adhesion (PIA) as an efficient macromolecule in biofilm formation in the native condition, recombinant S. epidermidis surface-exposed rSesC protein, with the most homology to clumping factor A (ClfA) in S. aureus was cloned and expressed in a prokaryotic host as well. Fourier transform infrared spectrometry (FTIR) and Western blotting procedure analyzed purified PIA and protein, respectively. Then, the immune response was evaluated by measuring total IgG titers. Moreover, the capacity of Anti-biofilm forming activity of arisen antibodies to a biofilm-forming S. aureus strains was assessed by the semi-quantitative micro-plate procedure.

Results: Data showed that the total IgGs were boosted in mice immunized sera. By performing an inhibition assay, the biofilm inhibitory effect of secreted antibodies to test strain was observed. Arisen antibodies against the mixture significantly were more potent than PIA and rSesC, when comparing individual antigens in a biofilm inhibition assay.

Conclusions: immunization of mice with mentioned antigens especially a mixture of them, could eliminate the biofilm formation process in S. aureus. Hopefully, this study corresponds to the suggestion that the immunization of mice with PIA and rSesC candidate vaccines could protect against S. aureus infection.
Full-Text [PDF 422 kb]   (478 Downloads)    
Type of Article: Original Article | Subject: Microbiology
Received: 2020/09/22 | Accepted: 2020/09/29 | Published: 2021/05/9

1. Lindsey EA, Brackett CM, Mullikin T, Alcaraz C, Melander C. The discovery of N-1 substituted 2-aminobenzimidazoles as zinc-dependent S. aureus biofilm inhibitors. MedChemComm. 2012;3(11):1462-5. [DOI:10.1039/c2md20244a] [PMID] [PMCID]
2. Liu GY. Molecular pathogenesis of Staphylococcus aureus infection. Pediatr Res. 2009;65(5 Pt 2):71R-77R. [DOI:10.1203/PDR.0b013e31819dc44d] [PMID] [PMCID]
3. Mousavi SF, Mirzaei B, Shaghaghi B, Jalali P, Setayesh T, Moosavi SH. Phenotypic and genotypic features of first biofilm forming nasopharyngeal colonized Streptococcus pneumoniae isolates. Iranian journal of microbiology. 2017;9(4):200-207.
4. van Belkum A. Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. Curr Opin Infect Dis. 2006;19(4):339-44. [DOI:10.1097/01.qco.0000235159.40184.61] [PMID]
5. Hogea C, Van Effelterre T, Cassidy A. A model-based analysis: what potential could there be for a S. aureus vaccine in a hospital setting on top of other preventative measures?. BMC Infect Dis. 2014;14:291. [DOI:10.1186/1471-2334-14-291] [PMID] [PMCID]
6. Jones SM, Morgan M, Humphrey TJ, Lappin-Scott H. Effect of vancomycin and rifampicin on meticillin-resistant Staphylococcus aureus biofilms. Lancet. 2001;357(9249):40-1. [DOI:10.1016/S0140-6736(00)03572-8]
7. Adhikari RP, Karauzum H, Sarwar J, Abaandou L, Mahmoudieh M, Boroun AR, et al. Novel structurally designed vaccine for S. aureus α-hemolysin: protection against bacteremia and pneumonia. PLoS One. 2012;7(6):e38567. [DOI:10.1371/journal.pone.0038567] [PMID] [PMCID]
8. Kuklin NA, Clark DJ, Secore S, Cook J, Cope LD, McNeely T, et al. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect Immun. 2006;74(4):2215-23. [DOI:10.1128/IAI.74.4.2215-2223.2006] [PMID] [PMCID]
9. Shahmoradi M, Faridifar P, Shapouri R, Mousavi SF, Ezzedin M, Mirzaei B. Determining the Biofilm Forming Gene Profile of Staphylococcus aureus Clinical Isolates via Multiplex Colony PCR Method. Rep Biochem Mol Biol. 2019;7(2):181-188.
10. Paharik AE, Horswill AR. The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr. 2016;4(2):10. [DOI:10.1128/microbiolspec.VMBF-0022-2015] [PMID] [PMCID]
11. Cerca N, Jefferson KK, Oliveira R, Pier GB, Azeredo J. Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun. 2006;74(8):4849-55. [DOI:10.1128/IAI.00230-06] [PMID] [PMCID]
12. Maira-Litrán T, Kropec A, Goldmann DA, Pier GB. Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly-N-acetyl-β-(1-6)-glucosamine. Infect Immun. 2005;73(10):6752-62. [DOI:10.1128/IAI.73.10.6752-6762.2005] [PMID] [PMCID]
13. Shahrooei M, Hira V, Khodaparast L, Khodaparast L, Stijlemans B, Kucharíková S, et al. Vaccination with SesC decreases Staphylococcus epidermidis biofilm formation. Infect Immun. 2012;80(10):3660-8. [DOI:10.1128/IAI.00104-12] [PMID] [PMCID]
14. Shahrooei M, Hira V, Stijlemans B, Merckx R, Hermans PW, Van Eldere J. Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein. Infect Immun. 2009;77(9):3670-8. [DOI:10.1128/IAI.01464-08] [PMID] [PMCID]
15. Mack D, Nedelmann M, Krokotsch A, Schwarzkopf A, Heesemann J, Laufs R. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect Immun. 1994;62(8):3244-53. [DOI:10.1128/IAI.62.8.3244-3253.1994] [PMID] [PMCID]
16. Mirzaei B, Moosavi SF, Babaei R, Siadat SD, Vaziri F, Shahrooei M. Purification and evaluation of polysaccharide intercellular adhesion (PIA) antigen from staphylococcus epidermidis. Curr Microbiol. 2016;73(5):611-617. [DOI:10.1007/s00284-016-1098-5] [PMID]
17. Mirzaei B, Mousavi SF, Babaei R, Bahonar S, Siadat SD, Ardestani MS, et al. Synthesis of conjugated PIA-rSesC and immunological evaluation against biofilm-forming Staphylococcus epidermidis. J Med Microbiol. 2019;68(5):791-802. [DOI:10.1099/jmm.0.000910] [PMID]
18. Otto M. Staphylococcus epidermidis-the'accidental'pathogen. Nat Rev Microbiol. 2009;7(8):555-567. [DOI:10.1038/nrmicro2182] [PMID] [PMCID]
19. Farjah A, Owlia P, Siadat SD, Mousavi SF, Ardestani MS, Mohammadpour HK. Immunological evaluation of an alginate‐based conjugate as a vaccine candidate against Pseudomonas aeruginosa. APMIS. 2015;123(2):175-83. [DOI:10.1111/apm.12337] [PMID]
20. Amini V, Kazemian H, Yamchi JK, Feyisa SG, Aslani S, Shavalipour A, et al. Evaluation of the Immunogenicity of Diphtheria Toxoid Conjugated to Salmonella Typhimurium-Derived OPS in a Mouse Model: A Potential Vaccine Candidate Against Salmonellosis. Iran Red Crescent Med J. 2016;18(7):e34135. [DOI:10.5812/ircmj.34135]
21. Hickman DL, Johnson SW. Evaluation of the aesthetics of physical methods of euthanasia of anesthetized rats. J Am Assoc Lab Anim Sci. 2011;50(5):695-701.
22. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996-1006. [DOI:10.1128/JCM.22.6.996-1006.1985] [PMID] [PMCID]
23. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
24. Kobayashi N, Taniguchi K, Kojima K, Urasawa S, Uehara N, Omizu Y, et al. Analysis of methicillin-resistant and methicillin-susceptible Staphylococcus aureus by a molecular typing method based on coagulase gene polymorphisms. Epidemiol Infect. 1995;115(3):419-26. [DOI:10.1017/S095026880005857X] [PMID] [PMCID]
25. Hu J, Xu T, Zhu T, Lou Q, Wang X, Wu Y, et al. Monoclonal antibodies against accumulation-associated protein affect EPS biosynthesis and enhance bacterial accumulation of Staphylococcus epidermidis. PloS one. 2011;6(6):e20918. [DOI:10.1371/journal.pone.0020918] [PMID] [PMCID]
26. Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs?. Front Cell Infect Microbiol. 2014;4:112. [DOI:10.3389/fcimb.2014.00112] [PMID] [PMCID]
27. Marraffini LA, DeDent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev. 2006;70(1):192-221. [DOI:10.1128/MMBR.70.1.192-221.2006] [PMID] [PMCID]
28. Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, et al. The giant extracellular matrix‐binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol. 2010;75(1):187-207. [DOI:10.1111/j.1365-2958.2009.06981.x] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb