Volume 11, Issue 1 (Vol.11 No.1 Apr 2022)                   rbmb.net 2022, 11(1): 30-35 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Al-Amara S S M. Constitutive and Inducible Clindamycin Resistance Frequencies among Staphylococcus sp. Coagulase Negative Isolates in Al-Basrah Governorate, Iraq. rbmb.net 2022; 11 (1) :30-35
URL: http://rbmb.net/article-1-797-en.html
Department of Biology, College of Science, University of Basrah, Iraq.
Abstract:   (2469 Views)
Background: Antibiotics called macrolide, lincosamide and streptogramin B (MLSB) are being used to treat staphylococci infections. Multiple pathways that impart resistance to MLSB antibiotics have been confirmed to cause clinical failure. The present work aimed to determine the frequency of constitutive and inducible clindamycin resistant among coagulase-negative staphylococci (CoNS) isolates of different clinical samples in Al-Basrah governorate, Iraq.

Methods: The 28 CoNS, traditional techniques and the Vitek®2 system were used to identify the isolates. The disk diffusion technique was used to detect methicillin resistance and antibiotic sensitivity patterns via cefoxitin, gentamicin, ciprofloxacin, amikacin, teicoplanin, linezolid, doxycycline and vancomycin disks. Erythromycin and clindamycin antibiotic disks was used to detect the inducible and constitutive clindamycin resistance as well as a D-test according to CLSI guidelines.

Results: Among 28 CoNS isolated, the Staphylococcus aureus 11(39.29%), Staphylococcus epidermidis 7(25 %), Staphylococcus haemolyticus 4(14.29%) and Staphylococcus saprophyticus 3 (10.71%) were predominant isolated species. Out of 28 CoNS isolates, 15(53.57%) were methicillin resistant coagulasenegative staphylococci (MRCoNS) isolates and 13(46.43%) were methicillin sensitive coagulase-negative staphylococci (MSCoNS) isolates. The 15(53.57%) isolates out of 28 CoNS, showed erythromycin resistance while 6(40%) isolates out of 15 CoNS, showed inducible macrolide-lincosamide-streptogramin B (iMLSB) and 2(13.3%) of CONS isolated showed constitutive macrolide-lincosamide-streptogramin B (cMLSB).

Conclusions: In order to achive the best result in choosing the suitable treatment and avoiding the loses the money and time, it is better to use the D-test for inducible clindamycin resistance in the daily routine work of antibiotic susceptibility testing in hospital and private clinical laboratories.
Full-Text [PDF 360 kb]   (1071 Downloads)    
Type of Article: Original Article | Subject: Microbiology
Received: 2021/10/5 | Accepted: 2021/10/20 | Published: 2022/05/26

References
1. Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol rev. 1991;55(4):733-51. [DOI:10.1128/mr.55.4.733-751.1991] [PMID] [PMCID]
2. Otto M. Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol. 2010;5(2):183-195 [DOI:10.1586/edm.10.6] [PMID] [PMCID]
3. Green BN, Johnson CD, Egan JT, Rosenthal M, Griffith EA, Evans MW. Methicillin-resistant Staphylococcus aureus: an overview for manual therapists. J Chirop Med. 2012;11(1):64-76. [DOI:10.1016/j.jcm.2011.12.001] [PMID] [PMCID]
4. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Rev Microb. 2019;17(4):203-218. [DOI:10.1038/s41579-018-0147-4] [PMID] [PMCID]
5. Abdullah-Al-Shoeb M, Huq S, Abul Kalam Azad M. Assessment of antibacterial efficacy of Lugol's iodine compared with commercial hand sanitizers of Bangladesh. Journal of World's Poultry Research. 2019;9(5):130-137. [DOI:10.36380/scil.2019.jlsb21]
6. Bora P, Datta P, Gupta V, Singhal L, Chander J. Characterization and antimicrobial susceptibility of coagulase-negative staphylococci isolated from clinical samples. J Lab Physicians. 2018;10(4):414-419. [DOI:10.4103/JLP.JLP_55_18] [PMID] [PMCID]
7. Sasirekha B, Usha MS, Amruta JA, Ankit S, Brinda N, Divya R. Incidence of constitutive and inducible clindamycin resistance among hospital-associated Staphylococcus aureus. 3 Biotech. 2014;4(1):85-89. [DOI:10.1007/s13205-013-0133-5] [PMID] [PMCID]
8. Khatoon R, Jahan N. Evaluation of Prevalence of Inducible Clindamycin Resistance among Coagulase Negative Staphylococci (CoNS) Isolated from Various Clinical Samples in a Tertiary Care Hospital of North India. International Journal of Current Microb Appl Sci, 2018;7(2):513-522. [DOI:10.20546/ijcmas.2018.702.065]
9. Chika E, Joseph NF, Chijioke E. Detection of constitutive and inducible-clindamycin-resistance in clinical isolates of Staphylococcus aureus from a Federal Teaching Hospital in Abakaliki, Nigeria. Epidemiology of multidrug-resistant organisms in South-East Nigeria. 2018;2(1):31-34.
10. Malek-Jafarian M, Hosseini F, Ahmadi A. Pattern of Infection and Antibiotic Activity among Streptococcus agalactiae Isolates from Adults in Mashhad, Iran. Rep Biochem Mol Biol. 2015;3(2):89-93.
11. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microb Rev. 2014;27(4):870-926. [DOI:10.1128/CMR.00109-13] [PMID] [PMCID]
12. Freney J, Kloos WE, Hajek V, Webster JA, Bes M, Brun Y, et al. Recommended minimal standards for description of new staphylococcal species. Subcommittee on the taxonomy of staphylococci and streptococci of the International Committee on Systematic Bacteriology. Int J Syst Bacteriol. 1999;49 Pt 2:489-502. [DOI:10.1099/00207713-49-2-489] [PMID]
13. Institute, CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. 28th edn. Edited by P. Wayne. Wanye, PA Clinical and Laboratory Standards Institute Antimicrobial, 2018.
14. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI document M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute; 2012
15. Phukan C, Ahmed G, Sarma P. Inducible clindamycin resistance among Staphylococcus aureus isolates in a tertiary care hospital of Assam. Indian J Med Microbiol. 2015;33(3):456-8. [DOI:10.4103/0255-0857.158603] [PMID]
16. Piette A, Verschraegen GE. Role of coagulase-negative staphylococci in human disease. Vet Microbiol. 2009;134(1-2):45-54. [DOI:10.1016/j.vetmic.2008.09.009] [PMID]
17. Aghazadeh M, Ghotaslou R, Rezaee MA, Moshafi MH, Hojabri Z, Saffari F. Determination of antimicrobial resistance profile and inducible clindamycin resistance of coagulase negative staphylococci in pediatric patients: the first report from Iran. World J Pediat. 2015;11(3):250-4. [DOI:10.1007/s12519-014-0524-7] [PMID]
18. Tahmasebi S, Qasim MT, Krivenkova MV, Zekiy AO, Thangavelu L, Aravindhan S, et al. The effects of oxygen-ozone therapy on regulatory T-cell responses in multiple sclerosis patients. Cell Biol Int. 2021;45(7):1498-1509. [DOI:10.1002/cbin.11589] [PMID]
19. Pai V, Rao VI, Rao SP. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus [MRSA] isolates at a tertiary care hospital in Mangalore, South India. J Lab Physicians. 2010;2(2):82-4. [DOI:10.4103/0974-2727.72155] [PMID] [PMCID]
20. Seifi N, Kahani N, Askari E, Mahdipour S, Naderi NM. Inducible clindamycin resistance in Staphylococcus aureus isolates recovered from Mashhad, Iran. Iranian J Microb. 2012;4(2):82-86.
21. Pillar CMM. Prevalence of multidrug-resistant, methicillin-resistant Staphylococcus aureus in the United States: findings of the stratified analysis of the 2004 to 2005 LEADER Surveillance Programs. Diag Microbiol Infect Dis. 2008;60(2):221-4. [DOI:10.1016/j.diagmicrobio.2007.08.007] [PMID]
22. Shoja S, Nahaei MR, Nahaei M. Detection of inducible clindamycin resistance in Staphylococcus aureus and Staphylococcus epidermidis by using D-Test. Pharma Sci. 2009; 15(1):1-8.
23. Koppad M, Parameshwar S, Halesh LH, Siddesh KC. Detection of inducible clindamycin resistance in staphylococcus aureus and CONS at tertiary care hospital. Indian Journal of Microbiology Research. 2015;2(4):192-197. [DOI:10.5958/2394-5478.2015.00012.6]
24. Debnath A, Ghosh R, Ghosh D. Debnath, A., Ghosh, R. and Ghosh, D. Detection of Inducible Clindamycin Resistance (iMLS B) among the Erythromycin Resistant CONS Isolates in a Rural Tertiary Care Hospital- Need of Time. International Journal of Health Sciences and Research (IJHSR). 2020;10:12-18.
25. Date K, Choudhary M, Thombare V. Inducible clindamycin resistance in clinical isolates of staphylococci in a rural hospital. Int J Biol Med Res. 2012;3(3):1922-5.
26. Khan F, Ali S, Sultan A, Rizvi M, Khatoon A, Shukla I, et al. A study of inducible clindamycin resistance in erythromycin resistant clinical isolates of staphylococcus species. Asian J Med Sci. 2015;6(6):48-52. [DOI:10.3126/ajms.v6i6.11811]
27. Shahmoradi M, Faridifar P, Shapouri R, Mousavi S F, Ezzedin M, Mirzaei B. Determining the Biofilm Forming Gene Profile of Staphylococcus aureus Clinical Isolates via Multiplex Colony PCR Method. Rep Biochem Mol Biol. 2019;7(2):181-188.
28. Shabgah AG, Qasim MT, Mostafavi SM, Zekiy AO, Ezzatifar F, Ahmadi M, et al. CXC chemokine ligand 16: a Swiss army knife chemokine in cancer. Expert Rev Mol Med. 2021;23:e4. [DOI:10.1017/erm.2021.7] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb