Volume 11, Issue 3 (Vol.11 No.3 Oct 2022)                   rbmb.net 2022, 11(3): 511-523 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alhelf M, Rashed L, Ahmed S, Mohamed M, Abdelgwad M. Can Micro RNA-24 Affect the Cardiovascular Morbidity in Systemic Lupus Erythematosus by Targeting YKL-40?. rbmb.net 2022; 11 (3) :511-523
URL: http://rbmb.net/article-1-813-en.html
Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University,Cairo, Egypt.
Abstract:   (322 Views)
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease with inflammatory nature. One of the leading causes of death in SLE patients is cardiovascular (CVS) morbidity. MiRNA-24 is highly expressed in vascular endothelial cells (VECs). This dysregulated expression pattern is associated with dysfunction or even damage of VECs and leads to the occurrence of cardiovascular diseases. YKL- 40 is an inflammatory glycoprotein involved in the pathogenesis of endothelial dysfunction and thereby atherosclerosis. In this work, we aimed at illustrating the possible role of miR-24 and its target YKL-40 in the pathogenesis of the CVS morbidity associated with SLE.

Methods: This work was conducted on 40 SLE patients and 40 healthy controls. Quantitative realtime PCR (qPCR) was done to estimate the expression level of miRNA-24 in serum. In addition, we measured the serum level of YKL-40 using ELISA.

Results: miR-24-fold change was found to be down-regulated, whereas serum YKL- 40 was upregulated among SLE patients with observed significant and negative correlation between the two parameters.

Conclusions: Our study provided an insight about the role of miR-24 and its target serum YKL-40 protein in the development of SLE-related inflammation and atherosclerosis.
Keywords: miRNA-24, SDC-1, SLE, VCAM, YKL-40.
Full-Text [PDF 291 kb]   (105 Downloads)    
Type of Article: Original Article | Subject: Biochemistry
Received: 2021/11/6 | Accepted: 2022/08/17 | Published: 2022/12/31

1. Nossent J, Cikes N, Kiss E, Marchesoni A, Nassonova V, Mosca M, et al. Current causes of death in systemic lupus erythematosus in Europe, 2000--2004: relation to disease activity and damage accrual. Lupus. 2007;16(5):309-17. [DOI:10.1177/0961203307077987] [PMID]
2. Kostopoulou M, Nikolopoulos D, Parodis I, Bertsias G. Cardiovascular Disease in Systemic Lupus Erythematosus: Recent Data on Epidemiology, Risk Factors and Prevention. Curr Vasc Pharmacol. 2020;18(6):549-565. [DOI:10.2174/1570161118666191227101636] [PMID]
3. López-Pedrera C, Aguirre MÁ, Barbarroja N, Cuadrado MJ. Accelerated atherosclerosis in systemic lupus erythematosus: role of proinflammatory cytokines and therapeutic approaches. J Biomed Biotechnol. 2010;2010:607084. [DOI:10.1155/2010/607084] [PMID] [PMCID]
4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;23;116(2):281-97. [DOI:10.1016/S0092-8674(04)00045-5] [PMID]
5. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9(8):839-45. [DOI:10.1038/ni.f.209] [PMID]
6. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383-90. [DOI:10.1161/ATVBAHA.111.226696] [PMID]
7. Cai B, Pan Z, Lu Y. The roles of microRNAs in heart diseases: a novel important regulator. Curr Med Chem. 2010;17(5):407-11. [DOI:10.2174/092986710790226129] [PMID]
8. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA- 23~ 27~ 24 clusters. Proc Natl Acad Sci U S A. 2011;108(20):8287-92. [DOI:10.1073/pnas.1105254108] [PMID] [PMCID]
9. Garbarsch C, Price PA, Ostergaard M, Ostergaard K, Løvgreen-Nielsen P, Sonne-Holm S, Lorenzen I. Studies on YKL-40 in knee joints of patients with rheumatoid arthritis and osteoarthritis. Involvement of YKL-40 in the joint pathology. Osteoarthritis Cartilage. 2001;9(3):203-14. [DOI:10.1053/joca.2000.0377] [PMID]
10. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA. Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev. 2006;15(2):194-202. [DOI:10.1158/1055-9965.EPI-05-0011] [PMID]
11. Rathcke CN, Vestergaard H. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm Res. 2006;55(6):221-7. [DOI:10.1007/s00011-006-0076-y] [PMID]
12. Roslind A, Johansen JS. YKL-40: a novel marker shared by chronic inflammation and oncogenic transformation. Methods Mol Biol. 2009;511:159-84. [DOI:10.1007/978-1-59745-447-6_7] [PMID]
13. Shao R, Hamel K, Petersen L, Cao QJ, Arenas RB, Bigelow C, et al. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. 2009;28(50):4456-68. [DOI:10.1038/onc.2009.292] [PMID] [PMCID]
14. Deng X, Liu Y, Luo M, Wu J, Ma R, Wan Q, Wu J. Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget. 2017;8(38):63038-63046. [DOI:10.18632/oncotarget.18593] [PMID] [PMCID]
15. Petri M, Orbai AM, Alarcón GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677-2686. [DOI:10.1002/art.34473] [PMID] [PMCID]
16. Chan YH. Biostatistics 102: quantitative data--parametric & non-parametric tests. Singapore Med J. 2003;44(8):391-6.
17. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716-730. [DOI:10.1038/nrrheum.2016.186] [PMID]
18. Bengtsson C, Ohman ML, Nived O, Rantapää Dahlqvist S. Cardiovascular event in systemic lupus erythematosus in northern Sweden: incidence and predictors in a 7-year follow-up study. Lupus. 2012;21(4):452-9. [DOI:10.1177/0961203311425524] [PMID]
19. Benvenuti F, Gatto M, Larosa M, Iaccarino L, Punzi L, Doria A. Cardiovascular risk factors, burden of disease and preventive strategies in patients with systemic lupus erythematosus: a literature review. Expert Opin Drug Saf. 2015;14(9):1373-85. [DOI:10.1517/14740338.2015.1073259] [PMID]
20. Roman MJ, Shanker BA, Davis A, Lockshin MD, Sammaritano L, Simantov R, Crow MK, Schwartz JE, Paget SA, Devereux RB, Salmon JE. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N Engl J Med. 2003;349(25):2399-406. [DOI:10.1056/NEJMoa035471] [PMID]
21. Murata K, Furu M, Yoshitomi H, Ishikawa M, Shibuya H, Hashimoto M, et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS One. 2013;8(7):e69118. [DOI:10.1371/journal.pone.0069118] [PMID] [PMCID]
22. Fordham JB, Naqvi AR, Nares S. miR-24 Regulates Macrophage Polarization and Plasticity. J Clin Cell Immunol. 2015;6(5):362.
23. Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front Immunol. 2018;9:1377. [DOI:10.3389/fimmu.2018.01377] [PMID] [PMCID]
24. Wcisło-Dziadecka D, Kotulska A, Brzezińska-Wcisło L, Kucharz EJ, Lis-Swiety A, Kamińska-Wiciorek G. Serum human cartilage glycoprotein-39 levels in patients with systemic lupus erythematosus. Pol Arch Med Wewn. 2009;119(12):777-84. [DOI:10.20452/pamw.841] [PMID]
25. Vos K, Steenbakkers P, Miltenburg AM, Bos E, van Den Heuvel MW, van Hogezand RA, de Vries RR, Breedveld FC, Boots AM. Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Ann Rheum Dis. 2000;59(7):544-8. [DOI:10.1136/ard.59.7.544] [PMID] [PMCID]
26. Vind I, Johansen JS, Price PA, Munkholm P. Serum YKL-40, a potential new marker of disease activity in patients with inflammatory bowel disease. Scand J Gastroenterol. 2003;38(6):599-605. [DOI:10.1080/00365520310000537] [PMID]
27. Johansen JS, Milman N, Hansen M, Garbarsch C, Price PA, Graudal N. Increased serum YKL-40 in patients with pulmonary sarcoidosis--a potential marker of disease activity? Respir Med. 2005;99(4):396-402. [DOI:10.1016/j.rmed.2004.09.016] [PMID]
28. Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J, Xiu Q, Li B. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol. 2013;190(1):438-46. [DOI:10.4049/jimmunol.1201827] [PMID]
29. Jin T, Lu Y, He QX, Wang H, Li BF, Zhu LY, Xu QY. The Role of MicroRNA, miR-24, and Its Target CHI3L1 in Osteomyelitis Caused by Staphylococcus aureus. J Cell Biochem. 2015;116(12):2804-13. [DOI:10.1002/jcb.25225] [PMID]
30. Alexopoulou AN, Multhaupt HA, Couchman JR. Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol. 2007;39(3):505-28. [DOI:10.1016/j.biocel.2006.10.014] [PMID]
31. Kim KJ, Kim JY, Baek IW, Kim WU, Cho CS. Elevated serum levels of syndecan-1 are associated with renal involvement in patients with systemic lupus erythematosus. J Rheumatol. 2015;42(2):202-9. [DOI:10.3899/jrheum.140568] [PMID]
32. Minowa K, Amano H, Nakano S, Ando S, Watanabe T, Nakiri Y, Amano E, Tokano Y, Morimoto S, Takasaki Y. Elevated serum level of circulating syndecan-1 (CD138) in active systemic lupus erythematosus. Autoimmunity. 2011;44(5):357-62. [DOI:10.3109/08916934.2010.545846] [PMID]
33. Fajardo-Robledo NS, Diaz-Rizo V, Rocha-Muñoz A, Muñoz-Valle J, Gonzalez-Lopez L, Gamez-Nava J et al. AB0084 Serum Levels of Syndecan-1 and Organ Involvement in Systemic Lupus Erythematosus. Ann Rheum Diss.2014;73:831-832. [DOI:10.1136/annrheumdis-2014-eular.5962]
34. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76(2):301-14. [DOI:10.1016/0092-8674(94)90337-9] [PMID]
35. Skeoch S, Haque S, Pemberton P, Bruce IN. Cell adhesion molecules as potential biomarkers of nephritis, damage and accelerated atherosclerosis in patients with SLE. Lupus. 2014;23(8):819-24. [DOI:10.1177/0961203314528061] [PMID] [PMCID]
36. Belmont HM, Buyon J, Giorno R, Abramson S. Up-regulation of endothelial cell adhesion molecules characterizes disease activity in systemic lupus erythematosus. The Shwartzman phenomenon revisited. Arthritis Rheum. 1994;37(3):376-83. [DOI:10.1002/art.1780370311] [PMID]
37. Wu T, Xie C, Wang HW, Zhou XJ, Schwartz N, Calixto S, et al. Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis. J Immunol. 2007;179(10):7166-75. [DOI:10.4049/jimmunol.179.10.7166] [PMID]
38. da Rosa Franchi Santos LF, Stadtlober NP, Costa Dall'Aqua LG, Scavuzzi BM, Guimarães PM, Flauzino T, et al. Increased adhesion molecule levels in systemic lupus erythematosus: relationships with severity of illness, autoimmunity, metabolic syndrome and cortisol levels. Lupus. 2018;27(3):380-388. [DOI:10.1177/0961203317723716] [PMID]
39. Shao R. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol. 2013;4:122. [DOI:10.3389/fphys.2013.00122] [PMID] [PMCID]
40. Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017;12:18-34. [DOI:10.1016/j.redox.2017.01.007] [PMID] [PMCID]
41. Detmar M, Brown LF, Schön MP, Elicker BM, Velasco P, Richard L, et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol. 1998;111(1):1-6. [DOI:10.1046/j.1523-1747.1998.00262.x] [PMID]
42. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276(10):7614-20. [DOI:10.1074/jbc.M009705200] [PMID]
43. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685-95. [DOI:10.1056/NEJMra043430] [PMID]
44. Verna L, Ganda C, Stemerman MB. In vivo low-density lipoprotein exposure induces intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 correlated with activator protein-1 expression. Arterioscler Thromb Vasc Biol. 2006;26(6):1344-9. [DOI:10.1161/01.ATV.0000222152.83069.3f] [PMID]
45. Čejková S, Králová-Lesná I, Poledne R. Monocyte adhesion to the endothelium is an initial stage of atherosclerosis development. Cor et Vasa. 2016; 58(4):e419-e425. [DOI:10.1016/j.crvasa.2015.08.002]
46. Li J, Wang Q, Zhang Q, Wang Z, Wan X, Miao C, Zeng X. Higher Blood Vascular Cell Adhesion Molecule-1 is Related to the Increased Risk of Cardiovascular Events in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2020 Sep 28;15:2289-2295. [DOI:10.2147/COPD.S264889] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb