Volume 11, Issue 1 (Vol.11 No.1 Apr 2022)                   rbmb.net 2022, 11(1): 111-124 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghotaslou A, Samii A, Boustani H, Kiani Ghalesardi O, Shahidi M. AMG-232, a New Inhibitor of MDM-2,Enhance Doxorubicin Efficiency in Pre-B Acute Lymphoblastic Leukemia Cells. rbmb.net 2022; 11 (1) :111-124
URL: http://rbmb.net/article-1-851-en.html
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran & Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran.
Abstract:   (2178 Views)
Background: Doxorubicin (DOX)-induced cardiotoxicity appears to be a growing concern for extensive use in acute lymphoblastic leukemia (ALL). The new combination treatment strategies, therefore might be an effective way of decreasing its side effects as well as improving efficacy. AMG232 (KRT-232) is a potential MDM-2 inhibitor, increasing available p53 through disturbing p53-MDM-2 interaction. In this study, we examined the effects of AMG232 on DOX-induced apoptosis of NALM-6 cells.

Methods: The anti-leukemic effects of Doxorubicin on NALM-6 cells, either alone or in combination with AMG232, were confirmed by MTT assay, Annexin/PI apoptosis assay, and cell cycle analysis. Expression of apoptosis and autophagy-related genes were further evaluated by Real time-PCR method. To investigate the effect of AMG232 on NALM-6 cells, the activation of p53, p21, MDM-2, cleaved Caspase-3 proteins
was evaluated using western blot analysis.

Results: The results showed that AMG232 inhibition of MDM-2 enhances Doxorubicin-induced apoptosis in NALM-6 cells through caspase-3 activation in a time and dose-dependent manner. Furthermore, cotreatment of AMG232 with Doxorubicin hampered the transition of NALM-6 cells from G1 phase through
increasing p21 protein. In addition, this combination treatment led to enhanced expression of apoptosis and autophagy-related genes in ALL cell lines.

Conclusions: The results declared that AMG232 as an MDM-2 inhibitor could be an effective approach to enhance antitumor effects of Doxorubicin on NALM-6 cells as well as an effective future treatment for ALL patients.
Full-Text [PDF 623 kb]   (771 Downloads)    
Type of Article: Original Article | Subject: Molecular Biology
Received: 2022/01/4 | Accepted: 2022/01/9 | Published: 2022/05/26

1. Malard F, Mohty M. Acute lymphoblastic leukaemia. The Lancet. 2020;395(10230):1146-62. [DOI:10.1016/S0140-6736(19)33018-1]
2. Kato M, Manabe A. Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 2018;60(1):4-12. [DOI:10.1111/ped.13457] [PMID]
3. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J of Med. 2006;354(2):166-78. [DOI:10.1056/NEJMra052603] [PMID]
4. Cortés-Funes H, Coronado C. Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol. 2007;7(2):56-60. [DOI:10.1007/s12012-007-0015-3] [PMID]
5. Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, et al. Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112:108614. [DOI:10.1016/j.biopha.2019.108614] [PMID]
6. Zhao M, Ding X-f, Shen J-y, Zhang X-p, Ding X-w, Xu B. Use of liposomal doxorubicin for adjuvant chemotherapy of breast cancer in clinical practice. J Zhejiang Univ Sci B. 2017;18(1):15-26. [DOI:10.1631/jzus.B1600303] [PMID] [PMCID]
7. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157-70. [DOI:10.1111/j.2042-7158.2012.01567.x] [PMID]
8. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440-446. [DOI:10.1097/FPC.0b013e32833ffb56] [PMID] [PMCID]
9. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology. 2012;52(6):1213-1225. [DOI:10.1016/j.yjmcc.2012.03.006] [PMID]
10. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022-38043. [DOI:10.18632/oncotarget.16723] [PMID] [PMCID]
11. Lin R-W, Ho C-J, Chen H-W, Pao Y-H, Chen L-E, Yang M-C, et al. P53 enhances apoptosis induced by doxorubicin only under conditions of severe DNA damage. Cell Cycle. 2018;17(17):2175-2186. [DOI:10.1080/15384101.2018.1520565] [PMID] [PMCID]
12. Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem. 2016;85:375-404. [DOI:10.1146/annurev-biochem-060815-014710] [PMID]
13. Trino S, De Luca L, Laurenzana I, Caivano A, Del Vecchio L, Martinelli G, et al. P53-MDM2 pathway: Evidences for a new targeted therapeutic approach in B-acute lymphoblastic leukemia. Front Pharmacol. 2016;7:491. [DOI:10.3389/fphar.2016.00491] [PMID] [PMCID]
14. Kojima K, Ishizawa J, Andreeff M. Pharmacological activation of wild-type p53 in the therapy of leukemia. Exp Hematol. 2016;44(9):791-798. [DOI:10.1016/j.exphem.2016.05.014] [PMID] [PMCID]
15. Chen C, Lu L, Yan S, Yi H, Yao H, Wu D, et al. Autophagy and doxorubicin resistance in cancer. Anti-cancer drugs. 2018;29(1):1-9. [DOI:10.1097/CAD.0000000000000572] [PMID]
16. Borthakur G, Duvvuri S, Ruvolo V, Tripathi DN, Piya S, Burks J, et al. MDM2 Inhibitor, Nutlin 3a, Induces p53 Dependent Autophagy in Acute Leukemia by AMP Kinase Activation. PLoS One. 2015;10(10):e0139254. [DOI:10.1371/journal.pone.0139254] [PMID] [PMCID]
17. Gluck WL, Gounder MM, Frank R, Eskens F, Blay JY, Cassier PA, et al. Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma. Invest New Drugs. 2020;38(3):831-843. [DOI:10.1007/s10637-019-00840-1] [PMID] [PMCID]
18. Erba HP, Becker PS, Shami PJ, Grunwald MR, Flesher DL, Zhu M, et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 2019;3(13):1939-1949. [DOI:10.1182/bloodadvances.2019030916] [PMID] [PMCID]
19. Her N-G, Oh J-W, Oh YJ, Han S, Cho HJ, Lee Y, et al. Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell death & disease. 2018;9(8):1-12. [DOI:10.1038/s41419-018-0825-1] [PMID] [PMCID]
20. Sahin I, Zhang S, Navaraj A, Zhou L, Dizon D, Safran H, et al. AMG-232 sensitizes high MDM2-expressing tumor cells to T-cell-mediated killing. Cell Death Discov. 2020;6:71. https://doi.org/10.1038/s41420-020-00310-1 [DOI:10.1038/s41420-020-0292-1] [PMID] [PMCID]
21. Zhang X, Zhang R, Chen H, Wang L, Ren C, Pataer A, et al. KRT-232 and navitoclax enhance trametinib's anti-Cancer activity in non-small cell lung cancer patient-derived xenografts with KRAS mutations. Am J Cancer Res. 2020;10(12):4464-4475.
22. Prabakaran PJ, Javaid AM, Swick AD, Werner LR, Nickel KP, Sampene E, et al. Radiosensitization of adenoid cystic carcinoma with MDM2 inhibition. Clin Cancer Res. 2017;23(20):6044-6053. [DOI:10.1158/1078-0432.CCR-17-0969] [PMID] [PMCID]
23. Shattuck-Brandt RL, Chen S-C, Murray E, Johnson CA, Crandall H, O'Neal JF, et al. Metastatic Melanoma Patient-Derived Xenografts Respond to MDM2 Inhibition as a Single Agent or in Combination with BRAF/MEK Inhibition. Clinical Cancer Research. 2020;26(14):3803-18. [DOI:10.1158/1078-0432.CCR-19-1895] [PMID] [PMCID]
24. Sanz G, Singh M, Peuget S, Selivanova G. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol. 2019;11(7):586-599. [DOI:10.1093/jmcb/mjz075] [PMID] [PMCID]
25. Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, et al. The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther. 2015;14(3):649-58. [DOI:10.1158/1535-7163.MCT-14-0710] [PMID]
26. Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13(3):217-36. [DOI:10.1038/nrd4236] [PMID]
27. Werner LR, Huang S, Francis DM, Armstrong EA, Ma F, Li C, et al. Small molecule inhibition of MDM2-p53 interaction augments radiation response in human tumors. Mol Cancer Ther. 2015;14(9):1994-2003. [DOI:10.1158/1535-7163.MCT-14-1056-T] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb