1. Malard F, Mohty M. Acute lymphoblastic leukaemia. The Lancet. 2020;395(10230):1146-62. [
DOI:10.1016/S0140-6736(19)33018-1]
2. Kato M, Manabe A. Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 2018;60(1):4-12. [
DOI:10.1111/ped.13457] [
PMID]
3. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J of Med. 2006;354(2):166-78. [
DOI:10.1056/NEJMra052603] [
PMID]
4. Cortés-Funes H, Coronado C. Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol. 2007;7(2):56-60. [
DOI:10.1007/s12012-007-0015-3] [
PMID]
5. Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, et al. Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112:108614. [
DOI:10.1016/j.biopha.2019.108614] [
PMID]
6. Zhao M, Ding X-f, Shen J-y, Zhang X-p, Ding X-w, Xu B. Use of liposomal doxorubicin for adjuvant chemotherapy of breast cancer in clinical practice. J Zhejiang Univ Sci B. 2017;18(1):15-26. [
DOI:10.1631/jzus.B1600303] [
PMID] [
PMCID]
7. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157-70. [
DOI:10.1111/j.2042-7158.2012.01567.x] [
PMID]
8. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440-446. [
DOI:10.1097/FPC.0b013e32833ffb56] [
PMID] [
PMCID]
9. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology. 2012;52(6):1213-1225. [
DOI:10.1016/j.yjmcc.2012.03.006] [
PMID]
10. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022-38043. [
DOI:10.18632/oncotarget.16723] [
PMID] [
PMCID]
11. Lin R-W, Ho C-J, Chen H-W, Pao Y-H, Chen L-E, Yang M-C, et al. P53 enhances apoptosis induced by doxorubicin only under conditions of severe DNA damage. Cell Cycle. 2018;17(17):2175-2186. [
DOI:10.1080/15384101.2018.1520565] [
PMID] [
PMCID]
12. Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem. 2016;85:375-404. [
DOI:10.1146/annurev-biochem-060815-014710] [
PMID]
13. Trino S, De Luca L, Laurenzana I, Caivano A, Del Vecchio L, Martinelli G, et al. P53-MDM2 pathway: Evidences for a new targeted therapeutic approach in B-acute lymphoblastic leukemia. Front Pharmacol. 2016;7:491. [
DOI:10.3389/fphar.2016.00491] [
PMID] [
PMCID]
14. Kojima K, Ishizawa J, Andreeff M. Pharmacological activation of wild-type p53 in the therapy of leukemia. Exp Hematol. 2016;44(9):791-798. [
DOI:10.1016/j.exphem.2016.05.014] [
PMID] [
PMCID]
15. Chen C, Lu L, Yan S, Yi H, Yao H, Wu D, et al. Autophagy and doxorubicin resistance in cancer. Anti-cancer drugs. 2018;29(1):1-9. [
DOI:10.1097/CAD.0000000000000572] [
PMID]
16. Borthakur G, Duvvuri S, Ruvolo V, Tripathi DN, Piya S, Burks J, et al. MDM2 Inhibitor, Nutlin 3a, Induces p53 Dependent Autophagy in Acute Leukemia by AMP Kinase Activation. PLoS One. 2015;10(10):e0139254. [
DOI:10.1371/journal.pone.0139254] [
PMID] [
PMCID]
17. Gluck WL, Gounder MM, Frank R, Eskens F, Blay JY, Cassier PA, et al. Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma. Invest New Drugs. 2020;38(3):831-843. [
DOI:10.1007/s10637-019-00840-1] [
PMID] [
PMCID]
18. Erba HP, Becker PS, Shami PJ, Grunwald MR, Flesher DL, Zhu M, et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 2019;3(13):1939-1949. [
DOI:10.1182/bloodadvances.2019030916] [
PMID] [
PMCID]
19. Her N-G, Oh J-W, Oh YJ, Han S, Cho HJ, Lee Y, et al. Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell death & disease. 2018;9(8):1-12. [
DOI:10.1038/s41419-018-0825-1] [
PMID] [
PMCID]
20. Sahin I, Zhang S, Navaraj A, Zhou L, Dizon D, Safran H, et al. AMG-232 sensitizes high MDM2-expressing tumor cells to T-cell-mediated killing. Cell Death Discov. 2020;6:71.
https://doi.org/10.1038/s41420-020-00310-1 [
DOI:10.1038/s41420-020-0292-1] [
PMID] [
PMCID]
21. Zhang X, Zhang R, Chen H, Wang L, Ren C, Pataer A, et al. KRT-232 and navitoclax enhance trametinib's anti-Cancer activity in non-small cell lung cancer patient-derived xenografts with KRAS mutations. Am J Cancer Res. 2020;10(12):4464-4475.
22. Prabakaran PJ, Javaid AM, Swick AD, Werner LR, Nickel KP, Sampene E, et al. Radiosensitization of adenoid cystic carcinoma with MDM2 inhibition. Clin Cancer Res. 2017;23(20):6044-6053. [
DOI:10.1158/1078-0432.CCR-17-0969] [
PMID] [
PMCID]
23. Shattuck-Brandt RL, Chen S-C, Murray E, Johnson CA, Crandall H, O'Neal JF, et al. Metastatic Melanoma Patient-Derived Xenografts Respond to MDM2 Inhibition as a Single Agent or in Combination with BRAF/MEK Inhibition. Clinical Cancer Research. 2020;26(14):3803-18. [
DOI:10.1158/1078-0432.CCR-19-1895] [
PMID] [
PMCID]
24. Sanz G, Singh M, Peuget S, Selivanova G. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol. 2019;11(7):586-599. [
DOI:10.1093/jmcb/mjz075] [
PMID] [
PMCID]
25. Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, et al. The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther. 2015;14(3):649-58. [
DOI:10.1158/1535-7163.MCT-14-0710] [
PMID]
26. Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13(3):217-36. [
DOI:10.1038/nrd4236] [
PMID]
27. Werner LR, Huang S, Francis DM, Armstrong EA, Ma F, Li C, et al. Small molecule inhibition of MDM2-p53 interaction augments radiation response in human tumors. Mol Cancer Ther. 2015;14(9):1994-2003. [
DOI:10.1158/1535-7163.MCT-14-1056-T] [
PMID]