Volume 11, Issue 2 (Vol.11 No.2 Jul 2022)                   rbmb.net 2022, 11(2): 270-281 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Al-Fahad D, Alyaseen F, Al-Amery A, Ibeas Bin C. Regulation of Focal Adhesion Dynamics and Cell Migration by PLC/PI3K-Mediated Metabolism of PtdIns (4,5) P2 in a Breast Cancer Cell Line. rbmb.net 2022; 11 (2) :270-281
URL: http://rbmb.net/article-1-856-en.html
Department of Pharmaceutical Sciences, College of Pharmacy University of Thi-Qar, Iraq
Abstract:   (1987 Views)
Background: Focal adhesions (FAs) are highly dynamic complex structures that assembled and disassembled on an ongoing basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion to cell migration. Assembly and disassembly processes of FAs are
regulated by a variety of cellular signaling proteins and adaptors. We previously demonstrated that local levels of Phosphatidylinositol 4,5‐bisphosphate (PtdIns(4,5)P2) in MDA-MB-231 cells increases during FA assembly and declines during disassembly. In this study we aimed to investigate whether PtdIns(4,5)P2 regulates FA turnover.

Methods: MDA-MB-231 cells were co-transfected with a labeling vinculin (or zyxin) and the PLC𝛅1-PH biosensor to visualize FA localization and PtdIns(4,5)P2 in the cell membrane. We also used pharmacological inhibitors to determine the mechanism underlying the changes of PtdIns(4,5)P2 level
during FA turnover and cell migration. Immunostaining, immunoprecipitation, and Western blotting were used to examine the localization and interaction between phospholipase C (PLC)/phosphatidylinositol 3-kinase (PI3K) FA proteins.

Results: We showed that inhibition of PLC, PI3K significantly reduced the decline of PtdIns(4,5)P2 levels within FA disassembly and the slowdown rate of FA turnover and cell migration. We also showed that the inhibition of enzymes implicated in the downstream pathway of PtdIns(4,5)P2, such as diacylglycerol kinase (DAGK) and protein kinase C (PKC) significantly reduced FA turnover time and the speed of cell migration. Additionally, we demonstrated that PLC but not PI3K interact with FAs. In conclusion,

Conclusions: This study suggests that dynamical changes of PtdIns(4,5)P2 might regulate FA turnover and facilitate cell migration.
Full-Text [PDF 512 kb]   (1158 Downloads)    
Type of Article: Original Article | Subject: Cell Biology
Received: 2022/01/6 | Accepted: 2022/01/14 | Published: 2022/08/7

1. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, et al. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010;468(7323):580-4. [DOI:10.1038/nature09621] [PMID] [PMCID]
2. Alharbi BF, Al-Fahad D, Dash PR. Roles of Endocytic Processes and Early Endosomes on Focal Adhesion Dynamics in MDA-MB-231 Cells 31 Cells. Rep Biochem Mol Biol. 2021;10(2):145-155. [DOI:10.52547/rbmb.10.2.145] [PMID] [PMCID]
3. Al-Fahad D, Alharbi BF, Bih CI, Dash PR. Nitric oxide may regulate focal adhesion turnover and cell migration in MDA-MB-231 breast cancer cells by modulating early endosome trafficking. Med J Cell Biol. 2021;9(2):60-72. [DOI:10.2478/acb-2021-0010]
4. Al-Fahad D. Regulation of Focal Adhesions by PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in Cancer Cell Migration. University of Reading. 2018;27.
5. Wu C. Focal Adhesion: A Focal Point in Current Cell Biology and Molecular Medicine. Cell Adh Migr. 2007;1(1):13-8. https://doi.org/10.4161/cam.1.1.4081 [DOI:10.4161/cam.4081] [PMID] [PMCID]
6. Nagano M, Hoshino D, Koshikawa N, Akizawa O, Seiki M. Turnover of focal adhesions and cancer cell migration. Int J Cell Biol. 2012;2012:310616. [DOI:10.1155/2012/310616] [PMID] [PMCID]
7. Nayal A, Webb DJ, Horwitz AF. Talin: an emerging focal point of adhesion dynamics. CurrOpin Cell Biol. 2004;16(1):94-8. [DOI:10.1016/j.ceb.2003.11.007] [PMID]
8. Zaidel-Bar R, Cohen M, Addadi L, Geiger B. Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans. 2004;32(Pt3):416-20. [DOI:10.1042/bst0320416] [PMID]
9. Jiang G, Giannone G, Critchley DR, Fukumoto E, Sheetz MP. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature. 2003;424(6946):334-7. [DOI:10.1038/nature01805] [PMID]
10. Giannone G, Mège R-M, Thoumine O. Multi-level molecular clutches in motile cell processes. Trends Cell Biol. 2009;19(9):475-86. [DOI:10.1016/j.tcb.2009.07.001] [PMID]
11. Balla T. Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiol Rev. 2013;93(3):1019-1137. [DOI:10.1152/physrev.00028.2012] [PMID] [PMCID]
12. Fogh BS, Multhaupt HAB, Couchman JR. Protein Kinase C, Focal Adhesions and the Regulation of Cell Migration. J Histochem Cytochem. 2014;62(3):172-84. [DOI:10.1369/0022155413517701] [PMID] [PMCID]
13. Chen YF, Chen YT, Chiu WT, Shen MR. Remodeling of calcium signaling in tumor progression. J Biomed Sci. 2013;20(1):23. [DOI:10.1186/1423-0127-20-23] [PMID] [PMCID]
14. Al-Fahad, D. The possible role of PtdIns (4,5) P2 and PtdIns (3,4,5) P3 at the leading and trailing edges of the breast cancer cell line. Iberoamerican Journal of Medicine. 2021;3(1):26-32. [DOI:10.53986/ibjm.2021.0006]
15. Alfahad D, Alharethi S, Alharbi B, MawloodK, Dash P. PtdIns(4,5)P2 and PtdIns(3,4,5)P3 dynamics during focal adhesions assembly and disassembly in a cancer cell line. Turk J Biol. 2020;44(6):381-392. [DOI:10.3906/biy-2004-108] [PMID] [PMCID]
16. Wang X, Hills LB, Huang YH. Lipid and Protein Co-Regulation of PI3K Effectors Akt and Itk in Lymphocytes. Front Immunol. 2015;6:117. [DOI:10.3389/fimmu.2015.00117] [PMID] [PMCID]
17. A Comparative Study to Visualize Ptdins (4,5) P2 and Ptdins (3,4,5) P3 in MDA-MB-231 Breast Cancer Cell Line. Rep Biochem Mol Biol. 2022;10(4):518-526. [DOI:10.52547/rbmb.10.4.518] [PMID] [PMCID]
18. Lemmon MA. Pleckstrin Homology (PH) domains and phosphoinositides. Biochem Soc Symp. 2007;(74):81-93. [DOI:10.1042/BSS2007c08]
19. Izard T, Brown DT. Mechanisms and Functions of Vinculin Interactions with Phospholipids at Cell Adhesion Sites. J Biol Chem. 2016;291(6):2548-2555. [DOI:10.1074/jbc.R115.686493] [PMID] [PMCID]
20. van den Bout I, Divecha N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci. 2009;122(Pt 21):3837-50. [DOI:10.1242/jcs.056127] [PMID]
21. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6(6):1353-63. [DOI:10.1242/dmm.011338] [PMID] [PMCID]
22. Várnai P, Balla T. Visualization of Phosphoinositides That Bind Pleckstrin Homology Domains: Calcium- and Agonist-induced Dynamic Changes and Relationship to Myo-[3H]inositol-labeled Phosphoinositide Pools. J Cell Biol. 1998;143(2):501-10. [DOI:10.1083/jcb.143.2.501] [PMID] [PMCID]
23. Raucher D, Stauffer T, Chen W, Shen K, Guo S, York J D, et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell. 2000;100(2):221-8. [DOI:10.1016/S0092-8674(00)81560-3]
24. Valeyev NV, Downing AK, Skorinkin AI, Campbell ID, Kotov NV. A calcium dependent de-adhesion mechanism regulates the direction and rate of cell migration: a mathematical model. In Silico Biol. 2006;6(6):545-72. [DOI:10.1186/1471-2105-6-S3-S15]
25. Easley CA, Brown CM, Horwitz AF, Tombes RM. CaMK-II Promotes Focal Adhesion Turnover and Cell Motility by Inducing Tyrosine Dephosphorylation of FAK and Paxillin. Cell Motil Cytoskeleton. 2008;65(8):662-674. [DOI:10.1002/cm.20294] [PMID] [PMCID]
26. Tsai FC, Kuo GH, Chang SW, Tsai PJ. Ca2+ signaling in cytoskeletal reorganization, cell migration, and cancer metastasis. Biomed Res Int. 2015;2015:409245. [DOI:10.1155/2015/409245] [PMID] [PMCID]
27. Balla T, Várnai P. Visualization of Cellular Phosphoinositide Pools with GFP-Fused Protein-Domains. Curr Protoc Cell Biol. 2009;Chapter 24:Unit 24.4. [DOI:10.1002/0471143030.cb2404s42] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Reports of Biochemistry and Molecular Biology

Designed & Developed by : Yektaweb